Skip to main content
Log in

Influence of the Axial-Vector Coupling Constant and the Energy Distribution Function on β-Decay Rates Within the Gross Theory of Beta Decay

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We evaluate the β-decay rates within the gross theory of beta decay (GTBD) and compare the results for different values of the axial-vector coupling constant, gA = 0.76, gA = 0.88, gA = 1, gA = 1.13, and gA = 1.26, and also different energy distribution functions like Gaussian, exponential, Lorentzian, and modified Lorentzian ones. We use new sets of parameters as well as updated experimental mass defects and also an improved approximation for the Fermi function. We compare our calculated results for a set of 94 nuclei of interest in pre-supernova phase, with experimental data in terrestrial conditions and also with other theoretical models like the QRPA, the shell model (SM), and different versions of the GTBD. We show that best results are obtained with gA = 1 using Gaussian and Lorentzian distributions, being the rates for the 74 and 80% of our sample, respectively, of the same order of magnitude that of experimental data. Finally, we show that the present results within the GTBD are better than those within the QRPA model and also older versions of the GTBD for the isotopes of cobalt and iron families, and comparable with SM for some elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Finite nuclear size effects are incorporated via the dipole form factor \(g\rightarrow g\left (\frac {{\Lambda }^{2}}{{\Lambda }^{2}+k^{2}}\right )\) where k is the momentum transfer and Λ = 850 MeV the cutoff energy.

References

  1. K. Takanahashi, M. Yamada, Gross theory of nuclear β-decay. Prog. Theor. Phys. 41, 1470 (1969)

    Article  ADS  Google Scholar 

  2. A.R. Samana, C. Barbero, S.B. Duarte, A.J. Dimarco, F. Krmpotić, The gross theory model for neutrino-nucleus cross-section. New J. Phys. 10, 1 (2008)

    Article  Google Scholar 

  3. R.C. Ferreira, A.J. Dimarco, A.R. Samana, Teoria grossa para o decaimento beta: eficiência, vantagens e desvantagens em aplicações astrofísicas. Exatas Online. 3(2), 1–24 (2012). ISSN 2178-0471. http://www2.uesb.br/exatasonline/images/V3N2%20pp1-24.pdf

  4. R.C. Ferreira, A.J. Dimarco, Teoria grossa para o decaimento beta: impactos da função de fermi no cálculo das taxas de desintegração nuclear. Encicl. Biosf., Centro Científico Conhecer - Goiânia. 8(14), 1699 (2012). http://www.conhecer.org.br/enciclop/2012a/exatas/teoria.pdf

    Google Scholar 

  5. R.C. Ferreira, A.J. Dimarco, A.R. Samana, C. Barbero, Weak decay processes in pre-supernova core evolution within the gross theory. Astron. J. 784, 1 (2014)

    Article  Google Scholar 

  6. Y.F. Niu, N. Paar, D. Vreternar, J. Meng, Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation. Phys. Rev. C. 83, 045807 (2011)

    Article  ADS  Google Scholar 

  7. J. Suhonen, O. Civitarese, Probing the quenching of g A by single and double beta decays. Phys. Lett. B725, 153 (2013)

    Article  ADS  Google Scholar 

  8. A.R. Samana, D. Sande, F. Krmpotić, Systematic muon capture rates in PQRPA. AIP Conf. Proc. 1663, 120003 (2015)

    Article  Google Scholar 

  9. K. Langanke, G. Martínez-Pinedo, Supernova electron capture rates on odd-odd nuclei. Phys. Lett. B453, 187 (1998)

    ADS  Google Scholar 

  10. K. Takahashi, M. Yamada, T. Kondon, Beta-decay half-lives calculated on the gross theory. At. Data Nucl. Data Tables. 12, 101 (1973)

    Article  ADS  Google Scholar 

  11. I.N. Borzov, S. Goriely, Weak interaction rates of neutron-rich nuclei and the r-process nucleosynthesis. Phys. Rev. C. 62, 035501 (2000)

    Article  ADS  Google Scholar 

  12. M.B. Aufderheide, I. Fushiki, S.E. Woosley, D.H. Hartman, Search for important weak interaction nuclei in presupernova evolution. Astrophys. J. Suppl. Series. 91, 389 (1994)

    Article  ADS  Google Scholar 

  13. K.C. Chung, Introduçãoà Fìsica Nuclear, Ed. UERJ, Rio de Janeiro, Brazil (2001)

  14. Letter of Nuclide, Available at: www-nds.iaea.org/relnsd/vchart/index.html (2016)

  15. K. Takahashi, Gross theory of first forbidden β-decay. Prog. Theor. Phys. 45, 1446 (1971)

    ADS  Google Scholar 

  16. K. Nakayama, A. Pio Galeão, F. Krmpotić, On the energetics of the gamow-teller resonances. Phys. Lett. B114, 217 (1983)

    ADS  Google Scholar 

  17. K. Kar, A. Ray, S. Sarkar, Beta-decay rates of FP shell nuclei with A greater than 60 in massive stars at the presupernova stage. Astron. J. 434, 662 (1994)

    Article  ADS  Google Scholar 

  18. T. Marketin, D. Vetrenar, P. Ring, Calculation of β-decay rates in a relativistic model with momentum-dependent self-energies. Phys. Rev. C. 75, 024304 (2007)

    Article  ADS  Google Scholar 

  19. J. Hirsch, E. Bauer, F. Krmpotić, Gamow-Teller strength functions and two-neutrino double-beta decay. Nucl. Phys. A516, 304 (1990)

    Article  ADS  Google Scholar 

  20. B.A. Brown, B.H. Wildenthal, Experimental and theoretical gamow-teller beta-decay observables for the sd-shell nuclei. At. Data Nucl. Data Tables. 33, 347 (1985)

    Article  ADS  Google Scholar 

Download references

Funding

C.B. and A.M. are fellows of the CONICET, CCT La Plata (Argentina), and thank the partial support under Grant PIP No. 0810. A.R.S. and A.D. thank the partial support of UESC, and FAPESB (TERMO DE OUTORGA- n\(^{\underline {{\circ }}}\) PIE0013/2016). D.N.P. thanks the financial support of FAPESB (Fundação de Amparo à Pesquisa do Estado da Bahia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Barbero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Possidonio, D.N., Ferreira, R.C., Dimarco, A.J. et al. Influence of the Axial-Vector Coupling Constant and the Energy Distribution Function on β-Decay Rates Within the Gross Theory of Beta Decay. Braz J Phys 48, 485–496 (2018). https://doi.org/10.1007/s13538-018-0564-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0564-x

Keywords

Navigation