Skip to main content
Log in

Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles (𝜃 between 10 and 15). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science. 306(5696), 666 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  2. J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. Lett. 99, 256802 (2007). https://doi.org/10.1103/PhysRevLett.99.256802

    Article  ADS  Google Scholar 

  3. K. Sato, R. Saito, C. Cong, T. Yu, M.S. Dresselhaus, Phys. Rev. B. 86, 125414 (2012). https://doi.org/10.1103/PhysRevB.86.125414

    Article  ADS  Google Scholar 

  4. G. Li, A. Luican, J.L. Dos Santos, A.C. Neto, A. Reina, J. Kong, E. Andrei, Nat. Phys. 6(2), 109 (2009)

    Article  Google Scholar 

  5. P. Moon, M. Koshino, Phys. Rev. B. 87, 205404 (2013). https://doi.org/10.1103/PhysRevB.87.205404

    Article  ADS  Google Scholar 

  6. R.W. Havener, H. Zhuang, L. Brown, R.G. Hennig, J. Park, Nano Lett. 12(6), 3162 (2012)

    Article  ADS  Google Scholar 

  7. K. Kim, S. Coh, L.Z. Tan, W. Regan, J.M. Yuk, E. Chatterjee, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Phys. Rev. Lett. 108, 246103 (2012). https://doi.org/10.1103/PhysRevLett.108.246103

    Article  ADS  Google Scholar 

  8. Z. Ni, L. Liu, Y. Wang, Z. Zheng, L.J. Li, T. Yu, Z. Shen, Phys. Rev. B. 80, 125404 (2009). https://doi.org/10.1103/PhysRevB.80.125404

    Article  ADS  Google Scholar 

  9. H.B. Ribeiro, K. Sato, G.S.N. Eliel, E.A.T. de Souza, C.C. Lu, P.W. Chiu, R. Saito, M.A. Pimenta, Carbon. 90, 138 (2015). https://doi.org/10.1016/j.carbon.2015.04.005

    Article  Google Scholar 

  10. Y. Wang, Z. Su, W. Wu, S. Nie, N. Xie, H. Gong, Y. Guo, J. Hwan Lee, S. Xing, X. Lu, H. Wang, X. Lu, K. McCarty, S.S. Pei, F. Robles-Hernandez, V.G. Hadjiev, J. Bao, Appl. Phys. Lett. 103(12), 123101 (2013). https://doi.org/10.1063/1.4821434

    Article  ADS  Google Scholar 

  11. R. He, T.F. Chung, C. Delaney, C. Keiser, L.A. Jauregui, P.M. Shand, C.C. Chancey, Y. Wang, J. Bao, Y.P. Chen, Nano Lett. 13(8), 3594 (2013). https://doi.org/10.1021/nl4013387. PMID: 23859121

    Article  ADS  Google Scholar 

  12. C.C. Lu, Y.C. Lin, Z. Liu, C.H. Yeh, K. Suenaga, P.W. Chiu, ACS Nano. 7(3), 2587 (2013). https://doi.org/10.1021/nn3059828. PMID: 23448165

    Article  Google Scholar 

  13. V. Carozo, C. Almeida, B. Fragneaud, P. Bedê, M. Moutinho, J. Ribeiro-Soares, N. Andrade, A. Souza Filho, M. Matos, B. Wang, et al., Phys. Rev. B. 88(8), 085401 (2013)

    Article  ADS  Google Scholar 

  14. R.W. Havener, Y. Liang, L. Brown, L. Yang, J. Park, Nano Lett. 14(6), 3353 (2014). PMID: 24798502

    Article  ADS  Google Scholar 

  15. C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 93, 147406 (2004). https://doi.org/10.1103/PhysRevLett.93.147406

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Brazilian Institute of Science and Technology (INCT) in Carbon Nanomaterials and the Brazilian agencies Fapemig, CAPES and CNPq. The authors thank Profs. P. Venezuela and L. G. Cancado for helpful discussions. RS acknowledges MEXT grants (25107005 and 25286005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. N. Eliel.

Additional information

This work was partially supported by Brazilian Institute of Science and Technology (INCT) in Carbon Nanomaterials and Brazilian agencies CAPES, CNPq. RS acknowledges MEXT grants (25107005 and 25286005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliel, G.S.N., Ribeiro, H.B., Sato, K. et al. Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene. Braz J Phys 47, 589–593 (2017). https://doi.org/10.1007/s13538-017-0526-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0526-8

Keywords

Navigation