Skip to main content
Log in

Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell’s relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  2. S. Bellucci, J. Gonzalez, F. Guinea, P. Onoato, E. Perfetto, Magnetic field effects in carbon nanotubes. J. Phys. Condens. Matter. 19, 395017 (2007)

    Article  Google Scholar 

  3. M. Kibalchenko, M.C. Payne, J.R. Yates, Magnetic response of single-walled carbon nanotubes induced by an external magnetic field. ACS Nano. 5(1), 537–545 (2011)

    Article  Google Scholar 

  4. D. Sebastiani, K.N. Kudin, Electronic response properties of carbon nanotubes in magnetic fields. ASC Nano. 2(4), 661–668 (2008)

    Article  Google Scholar 

  5. A.G. Arani, S. Amir, P. Dashti, M. Yousefi, Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect. Composite Materials Science. 86, 144–154 (2014)

    Article  Google Scholar 

  6. B. Wang, Z. Deng, H. Ouyang, X. Xu, Free vibration of wavy single-walled fluid-conveying carbon nanotubes in multi-physics fields. Appl. Math. Model. 39(22), 6780–6792 (2015)

    Article  MathSciNet  Google Scholar 

  7. D.S. Chung, S.H. Lee, H.W. Choi, Carbon nanotube electron emitters with a gated structure using backside exposure processes. Appl. Phys. Lett. 80, 4045–4047 (2002)

    Article  ADS  Google Scholar 

  8. S. Roche, R. Saito, Effects of magnetic field and disorder on the electronic properties of carbon nanotubes. Phys. Rev. B 59(7), 5242 (1999)

    Article  ADS  Google Scholar 

  9. W.S. Brian, R.D. Derrick, Magnetic field alignment and electrical properties of solution cast PET–carbon nanotube composite films. Polymer 50, 898–904 (2009)

    Article  Google Scholar 

  10. E. Camponeschi, R. Vance, M. Al-Haik, H. Garmestani, R. Tannenbaum, Properties of carbon nanotube–polymer composites aligned in a magnetic field. Carbon 45, 2037–2046 (2007)

    Article  Google Scholar 

  11. M.P. Andrey, V.L. Irina, A.K. Andrey, E.L. Yurii, A.P. Nikolai, I.S. Andrei, A.V. Sergey, V.R. Sergey, Force and magnetic field sensor based on measurement of tunneling conductance between ends of coaxial carbon nanotubes. Composite Materials Science. 92, 84–91 (2014)

    Article  Google Scholar 

  12. K. Kiani, Magnetically affected single-walled carbon nanotubes as nanosensors. Mech. Res. Commun. 60, 33–39 (2014)

    Article  ADS  Google Scholar 

  13. T. Murmu, M.A. McCarthy, S. Adhikari, Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J. Sound Vib. 331, 5069–5086 (2012)

    Article  ADS  Google Scholar 

  14. Z.H. Zhang, W.L. Guo, Y.F. Guo, The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Phys. Sin. 55(12), 6526–6531 (2006)

    Google Scholar 

  15. A.G. Arani, M.A. Roudbari, S. Amir, Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations. Appl. Math. Model. 40(3), 2025–2038 (2016)

    Article  MathSciNet  Google Scholar 

  16. H. Wang, K. Dong, F. Men, Y.J. Yan, X. Wang, Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Appl. Math. Model. 34, 878–889 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Narendar, S.S. Gupta, S. Gopalakrishnan, Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory. Appl. Math. Model. 36, 4529–4538 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Latgé, D. Grimm, M.S. Ferreira, Magnetic field effects of double-walled carbon nanotubes. Braz. J. Phys. 36, 3b (2006)

    Google Scholar 

  19. L. Chang, J.T. Lue, Magnetic properties of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 9, 1956–1963 (2009)

    Article  Google Scholar 

  20. C. Tsai, S. Chen, F. Shyu, C. Chang, M. Lin, Magnetization of carbon nanotubes. Phys. E. 30, 86–92 (2005)

    Article  Google Scholar 

  21. D. Zilli, C. Chiliotte, M.M. Escobar, V. Bekeris, G.R. Rubiolo, A.L. Cukierman, S. Goyanes, Mganetic properties of multi-walled carbon nanotube-epoxy composites. Polymer 46(16), 6090–6095 (2005)

    Article  Google Scholar 

  22. L.L. Ke, Y.S. Wang, Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory. Phys. E. 43, 1031–1039 (2011)

    Article  Google Scholar 

  23. S. Adhikari, D. Gilchrist, T. Murmu, M.A. McCarthy, Nonlocal normal modes in nanoscale dynamical systems. Mech. Syst. Signal Process. 60-61, 583–603 (2015)

    Article  ADS  Google Scholar 

  24. C.C. Hwang, Y.C. Wang, Q.Y. Kuo, J.M. Lu, Molecular dynamic study of multi-walled carbon nanotubes under uniaxial loading. Phys. E. 42(4), 775–778 (2010)

    Article  Google Scholar 

  25. A.R. Ranjbartoreh, G. Wang, Molecular dynamic investigation of mechanical properties of armchair and zigzag double-walled carbon nanotubes under various loading conditions. Phys. Lett. A 374(7), 969–974 (2010)

    Article  ADS  Google Scholar 

  26. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  ADS  Google Scholar 

  27. A.C. Eringen, Theories of nonlocal plasticity. Int. J. Eng. Sci. 21, 741–751 (1983)

    Article  MATH  Google Scholar 

  28. U. Güven, Transverse vibrations of single-walled carbon nanotubes with initial stress under magnetic field. Compos. Struct. 114, 92–98 (2014)

    Article  Google Scholar 

  29. K. Kiani, Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field. J. Phys. Chem. Solids 75, 15–22 (2014)

    Article  ADS  Google Scholar 

  30. K. Kiani, Stability and vibrations of doubly parallel current-carrying nanowires immersed in a longitudinal magnetic field. Phys. Lett. A 379, 348–360 (2015)

    Article  Google Scholar 

  31. W.A. Bedia, A. Benzair, A. Semmah, A. Tounsi, S.R. Mahmoud, On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity. Braz. J. Phys. 45, 225–233 (2015)

    Article  ADS  Google Scholar 

  32. B. Bouderba, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, Thermal stability of functionally graded sandwich plates using a simple shear deformation theory. Struct. Eng. Mech. 58(3), 397–422 (2016)

    Article  Google Scholar 

  33. F.L. Chaht, A. Kaci, M.S.A. Houari, A. Tounsi, O.A. Beg, S.R. Mahmoud, Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct. 18(2), 425–442 (2015)

    Article  Google Scholar 

  34. K. Bouafia, A. Kaci, M.S.A. Houari, A. Benzair, A. Tounsi, A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams. Smart Structures and Systems. 19(2), 115–126 (2017)

    Article  Google Scholar 

  35. M. Ahouel, M.S.A. Houari, E.A.A. Bedia, A. Tounsi, Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel Compos. Struct. 20(5), 963–981 (2016)

    Article  Google Scholar 

  36. M. Bourada, A. Kaci, M.S.A. Houari, A. Tounsi, A new simple shear and normal deformations theory for functionally graded beams. Steel Compos. Struct. 18(2), 409–423 (2015)

    Article  Google Scholar 

  37. H. Bellifa, K.H. Benrahou, A.A. Bousahla, A. Tounsi, S.R. Mahmoud, A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct. Eng. Mech. 62(6), 695–702 (2017)

    Google Scholar 

  38. Y. Beldjelili, A. Tounsi, S.R. Mahmoud, Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Structures and Systems. 18(4), 755–786 (2016)

    Article  Google Scholar 

  39. A. Chikh, A. Tounsi, H. Hebali, S.R. Mahmoud, A. Chikh, Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures Systems. 19(3), 289–297 (2017)

    Article  Google Scholar 

  40. A. Boukhari, H.A. Atmane, A. Tounsi, B.E.A. Adda, S.R. Mahmoud, An efficient shear deformation theory for wave propagation of functionally graded material plates. Struct. Eng. Mech. 57(5), 837–859 (2016)

    Article  Google Scholar 

  41. S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53(6), 1143–1165 (2015)

    Article  Google Scholar 

  42. A.A. Bousahla, S. Benyoucef, A. Tounsi, S.R. Mahmoud, On thermal stability of plates with functionally graded coefficient of thermal expansion. Struct. Eng. Mech. 60(2), 313–335 (2016)

    Article  Google Scholar 

  43. A. Attia, A. Tounsi, E.A.A. Bedia, S.R. Mahmoud, Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories. Steel and Composite Structers. 18(1), 187–212 (2015)

    Article  Google Scholar 

  44. A. Mahi, E.A.A. Bedia, A. Tounsi, A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39, 2489–2508 (2015)

    Article  MathSciNet  Google Scholar 

  45. I. Belkorissat, H. MSA, A. Tounsi, E.A.A. Bedia, S.R. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel Compos. Struct. 18(4), 1063–1081 (2015)

    Article  Google Scholar 

  46. B. Bouderba, M.S.A. Houari, A. Tounsi, Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations. Steel Compos. Struct. 14(1), 85–104 (2013)

    Article  Google Scholar 

  47. H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, A. Tounsi, Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 38, 265–275 (2016)

    Article  Google Scholar 

  48. C.P. Wu, W.W. Lai, Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions. Compos. Struct. 122, 390–404 (2015)

    Article  Google Scholar 

  49. X. Wang, J.X. Shen, Y. Liu, G.G. Shen, G. Lu, Rigorous van der Waals effect on vibration characteristics of multi-walled carbon nanotubes under a transverse magnetic field. Appl. Math. Model. 36, 648–656 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  50. B. Wang, Z. Deng, H. Ouyang, K. Zhang, Wave characteristics of single-walled fluid-conveying carbon nanotubes subjected to multi-physical fields. Phys. E. 52, 97–105 (2013)

    Article  Google Scholar 

  51. K. Kiani, Longitudinally varying magnetic field influenced transverse vibration of embedded double-walled carbon nanotubes. Int. J. Mech. Sci. 87, 179–199 (2014)

    Article  Google Scholar 

  52. A.G. Arani, M.S. Zarei, Nonlocal vibration of Y-shaped CNT conveying nano-magnetic viscous fluid under magnetic field. Ain Shams Eng. J. 6,565–575 (2015)

  53. A. Besseghier, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory. Smart Structures and Systems. 19(6), 601–614 (2017)

    Google Scholar 

  54. F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos. Struct. 20(2), 227–249 (2016)

    Article  Google Scholar 

  55. M.A. Kazemi-Lari, S.A. Fazelzadeh, E. Ghavanloo, Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation. Phys. E. 44, 1623–1630 (2012)

    Article  Google Scholar 

  56. A.P.A. Raju, A. Lewis, B. Derby, R.J. Young, Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy. Materials Views. 24, 2865–2874 (2014)

    Google Scholar 

  57. C.A. Cooper, R.J. Young, M. Halsall, Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. Part A 32, 401–411 (2001)

    Article  Google Scholar 

  58. P. Soltani, M.M. Taherian, A. Farshidianfar, Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium. J. Phys. D. Appl. Phys. 43, 425401 (2010)

    Article  ADS  Google Scholar 

  59. S. Pouresmaeeli, E. Ghabanloo, S.A. Fazelzadeh, Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Compos. Struct. 96, 405–410 (2013)

    Article  Google Scholar 

  60. Y. Lei, S. Adhikari, M.I. Friswell, Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams. Int. J. Eng. Sci. 66-67, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  61. T. Murmu, M.A. McCarthy, S. Adhikari, In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos. Struct. 96, 57–63 (2013)

    Article  Google Scholar 

  62. Y. Lei, Finite element analysis of beams with nonlocal foundations. 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. Newport, Rhode Island. 1–4 May 2006, 1–11. AIAA 2006-1742. https://doi.org/10.2514/6.2006-1742

  63. M.I. Friswell, S. Adhikari, Y. Lei, Vibration analysis of beams with non-local foundations using the finite element method. Int. J. Numer. Methods Eng. 71(11), 1365–1386 (2007)

    Article  MATH  Google Scholar 

  64. Y. Lei, T. Murmu, S. Adhikari, M.I. Friswell, Dynamic characteristics of damped viscoelastic nonlocal Euler-Bernoulli beams. Eur. J. Mech. A. Solids. 42, 125–136 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant Nos. 11272348 and 11302254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Lei, Y. & Shen, Z. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium. Braz J Phys 47, 640–656 (2017). https://doi.org/10.1007/s13538-017-0524-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0524-x

Keywords

Navigation