Skip to main content
Log in

Role of Barrier Modification and Nuclear Structure Effects in Sub-Barrier Fusion Dynamics of Various Heavy Ion Fusion Reactions

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The role of barrier modifications and the relevant nuclear structure effects in the fusion of the \( {}_8{}^{16}O+{}_{62}{}^{144,148,150,152,154}Sm \) and \( {}_3{}^{6,7}Li+{}_{62}{}^{152}Sm \) systems is analyzed within the context of the energy-dependent Woods-Saxon potential model (EDWSP model) and the coupled channel model. For the \( {}_8{}^{16}O+{}_{62}{}^{144,148,150,152,154}Sm \) reactions, where the colliding pairs are stable against breakup, the collective excitations and/or static deformations are sufficient to account for the observed fusion enhancement. In contrast, the model calculations overpredict the complete fusion data at above - barrier energies for the \( {}_3{}^{6,7}Li+{}_{62}{}^{152}Sm \) systems, where the importance of projectile breakup effects has been pointed out. Due to the low threshold of the alpha-breakup channel, the weakly bound projectiles \( \left({}_3{}^{6,7}Li\right) \) break up into charged fragments before reaching the fusion barrier and consequently the complete fusion cross section is suppressed by 28% (25%) in the \( {}_3{}^6Li+{}_{62}{}^{152}Sm\;\left({}_3{}^7Li+{}_{62}{}^{152}Sm\right) \) reaction with respect to predictions of coupled channel calculations. However, the EDWSP model based calculations can minimize the suppression factor by as much as of 13% (8%) in the \( {}_3{}^6Li+{}_{62}{}^{152}Sm\;\left({}_3{}^7Li+{}_{62}{}^{152}Sm\right) \) reaction with reference to the predictions made by the coupled channel calculations. Therefore, the complete fusion data of the \( {}_3{}^6Li+{}_{62}{}^{152}Sm\;\left({}_3{}^7Li+{}_{62}{}^{152}Sm\right) \) reaction at above - barrier energies is reduced by 15% (17%) with respect to the expectations of the EDWSP model. The extracted suppression factors for the studied reactions are due to the modifications of the barrier profile as a consequence of the energy - dependence in nucleus-nucleus potential, and thus greater barrier modifications occur for more weakly bound system, which in turn, confirms the breakup of projectile in the incoming channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.O. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981)

    Article  ADS  Google Scholar 

  2. J.D. Bierman et al., Phys. Rev. Lett. 76, 1587 (1996)

    Article  ADS  Google Scholar 

  3. M.S. Gautam, Indian J. Phys. 90, 335 (2016)

    Article  ADS  Google Scholar 

  4. P.R.S. Gomes et al., Phys. Rev. C 49, 245 (1994)

    Article  ADS  Google Scholar 

  5. E.F. Aguilera et al., Phys. Rev. C 52, 3103 (1995)

    Article  ADS  Google Scholar 

  6. J.R. Leigh et al., Phys. Rev. C 52, 3151 (1995)

    Article  ADS  Google Scholar 

  7. M.S. Gautam, Nucl. Phys. A 933, 272 (2015)

    Article  ADS  Google Scholar 

  8. A.A. Sonzogni et al., Phys. Rev. C 57, 722 (1998)

    Article  ADS  Google Scholar 

  9. N.V.S.V. Prasad et al., Nucl. Phys. A 603, 176 (1996)

    Article  ADS  Google Scholar 

  10. H.Q. Zhang et al., Phys. Rev. C 82, 054609 (2010)

    Article  ADS  Google Scholar 

  11. M.S. Gautam, Phys. Scr. 90, 055301 (2015)

    Article  ADS  Google Scholar 

  12. C.H. Dasso et al., Nucl. Phys. A 405, 381 (1983)

    Article  ADS  Google Scholar 

  13. J.X. Wei et al., Phys. Rev. Lett. 67, 3368 (1991)

    Article  ADS  Google Scholar 

  14. C.R. Morton et al., Phys. Rev. Lett. 72, 4074 (1994)

    Article  ADS  Google Scholar 

  15. M.S. Gautam, Mod. Phys. Lett. A 30, 1550013 (2015)

    Article  ADS  Google Scholar 

  16. L.F. Canto et al., Phys. Rep. 424, 1 (2006)

    Article  ADS  Google Scholar 

  17. K. Hagino, N. Takigawa, Prog. Theor. Phys. 128, 1061 (2012)

    Article  ADS  Google Scholar 

  18. A.M. Stefanini et al., Phys. Rev. C 62, 014601 (2000)

    Article  ADS  Google Scholar 

  19. V. Tripathi et al., Phys. Rev. C 65, 014614 (2001)

    Article  ADS  Google Scholar 

  20. M.S. Gautam et al., Phys. Rev. C 92, 054605 (2015)

    Article  ADS  Google Scholar 

  21. A.M. Stefanini et al., Phys. Rev. C 73, 034606 (2006)

    Article  ADS  Google Scholar 

  22. R.G. Stokstad et al., Phys. Rev. C 23, 281 (1981)

    Article  ADS  Google Scholar 

  23. R.G. Stokstad et al., Phys. Rev. C 21, 2427 (1980)

    Article  ADS  Google Scholar 

  24. H. Esbensen, Nucl. Phys. A 352, 147 (1981)

    Article  ADS  Google Scholar 

  25. W. Reisdorf et al., Nucl. Phys. A 438, 212 (1985)

    Article  ADS  Google Scholar 

  26. W. Reisdorf et al., Phys. Rev. Lett. 49, 1811 (1982)

    Article  ADS  Google Scholar 

  27. N. Rowley et al., Phys. Lett. B 254, 25 (1991)

    Article  ADS  Google Scholar 

  28. K. Hagino, N. Rowley, A.T. Kruppa, Comput. Phys. Commun. 123, 143 (1999) K Hagino (private communication)

    Article  ADS  Google Scholar 

  29. M.S. Sukhvinder, R. Kharab, Nucl. Phys. A 897, 179 (2013)

    Article  ADS  Google Scholar 

  30. M.S. Gautam, Phys. Rev. C 90, 024620 (2014)

    Article  ADS  Google Scholar 

  31. P.K. Rath et al., Phys. Rev. C 79, 051601 (2009)

    Article  ADS  Google Scholar 

  32. P.K. Rath et al., Nucl. Phys. A 874, 14 (2012)

    Article  ADS  Google Scholar 

  33. P.K. Rath et al., Phys. Rev. C 88, 044617 (2013)

    Article  ADS  Google Scholar 

  34. Z.H. Liu et al., Eur. Phys. J. A 26, 73 (2005)

    Article  ADS  Google Scholar 

  35. M.S. Hussein et al., Phys. Rev. C 46, 377 (1992)

    Article  ADS  Google Scholar 

  36. M.S. Hussein et al., Phys. Rev. C 51, 846 (1995)

    Article  ADS  Google Scholar 

  37. M.S. Gautam, Can. J. Phys. 93, 1343 (2015)

    Article  ADS  Google Scholar 

  38. C.H. Dasso et al., Phys. Rev. C 50, R12 (1994)

    Article  ADS  Google Scholar 

  39. C.H. Dasso et al., Phys. Lett. B 276, 1 (1992)

    Article  ADS  Google Scholar 

  40. K.E. Zyromski et al., Phys. Rev. C 55, R562 (1997)

    Article  ADS  Google Scholar 

  41. P.A. DeYong et al., Phys. Rev. C 58, 3442 (1998)

    Article  ADS  Google Scholar 

  42. J.J. Kolata et al., Phys. Rev. Lett. 81, 4580 (1998)

    Article  ADS  Google Scholar 

  43. M. Trotta et al., Phys. Rev. Lett. 84, 2342 (2000)

    Article  ADS  Google Scholar 

  44. M. Dasgupta et al., Phys. Rev. Lett. 82, 1395 (1999)

    Article  ADS  Google Scholar 

  45. C. Signorini et al., Eur. Phys. J. A 5, 7 (1999)

    Article  ADS  Google Scholar 

  46. M. Dasgupta et al., Phys. Rev. C 66, 041602(R) (2002)

    Article  ADS  Google Scholar 

  47. V. Tripathi et al., Phys. Rev. Lett. 88, 172701 (2002)

    Article  ADS  Google Scholar 

  48. H. Kumawat et al., Phys. Rev. C 86, 024607 (2012)

    Article  ADS  Google Scholar 

  49. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)

    Article  ADS  Google Scholar 

  50. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    Article  ADS  Google Scholar 

  51. M.S. Sukhvinder, R. Kharab, Nucl. Phys. A 897, 198 (2013)

    Article  ADS  Google Scholar 

  52. J.O. Newton et al., Phys. Rev. C 70, 024605 (2004)

    Article  ADS  Google Scholar 

  53. A. Mukherjee et al., Phys. Rev. C 75, 044608 (2007)

    Article  ADS  Google Scholar 

  54. L.C. Chamon et al., Phys. Rev. C 66, 014610 (2002)

    Article  ADS  Google Scholar 

  55. K. Washiyama, D. Lacroix, Phys. Rev. C 74, 024610 (2008)

    Article  ADS  Google Scholar 

  56. A.S. Umar, C. Simenel, V.E. Oberacker, Phys. Rev. C 89, 034611 (2011)

    Article  ADS  Google Scholar 

  57. A.S. Umar, V.E. Oberacker, Eur. Phys. J. A 39, 243 (2009)

    Article  ADS  Google Scholar 

  58. E.F. Aguilera, J.J. Kolata, Phys. Rev. C 85, 014603 (2012)

    Article  ADS  Google Scholar 

  59. K. Hagino et al., J. Phys. G 23, 1413 (1997)

    Article  ADS  Google Scholar 

  60. V.I. Zagrebaev, V.V. Samarin, Phys. At. Nucl. 67, 1488 (2004)

    Article  Google Scholar 

  61. R.A. Gatenby et al., Phys. Rev. C 41, R414 (1990)

    Article  ADS  Google Scholar 

  62. R.A. Gatenby et al., Phys. Rev. C 56, 633 (1993)

    Google Scholar 

  63. N. Takigawa et al., J. Phys. G 23, 1367 (1997)

    Article  ADS  Google Scholar 

  64. K. Hagino et al., Phys. Rev. C 57, 1349 (1997)

    Article  ADS  Google Scholar 

  65. D.E. DiGregorio et al., Phys. Rev. C 39, 516 (1989)

    Article  ADS  Google Scholar 

  66. I.J. Thompson, Com. Phys. Report 7, 167 (1988)

    Article  ADS  Google Scholar 

  67. A. Diaz-Torres, I.J. Thompson, Phys. Rev. C 65, 024606 (2002)

    Article  ADS  Google Scholar 

  68. P.R.S. Gomes et al., Journal of Physics G (Conferences Series) 420, 012121 (2013)

    Article  Google Scholar 

  69. C. Signorini et al., Phys. Rev. C 67, 044607 (2003)

    Article  ADS  Google Scholar 

  70. D.R. Otomar et al., Eur. Phys. J. A 46, 285 (2010)

    Article  ADS  Google Scholar 

  71. D.R. Otomar et al., Phys. Rev. C 87, 014615 (2013)

    Article  ADS  Google Scholar 

  72. D.H. Luong et al., Phys. Lett. B 695, 105 (2011)

    Article  ADS  Google Scholar 

  73. M. Dasgupta et al., Nucl. Phys. A 834, 147c (2010)

    Article  ADS  Google Scholar 

  74. R. Rafiei et al., Phys. Rev. C 81, 024601 (2010)

    Article  ADS  Google Scholar 

  75. N.A. Elmahdy et al., Eur. Phys. J. A 51, 62 (2015)

    Article  ADS  Google Scholar 

  76. E.F. Aguilera et al., Phys. Rev. C 41, 910 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Singh Gautam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, M.S., Vinod, K. & Kumar, H. Role of Barrier Modification and Nuclear Structure Effects in Sub-Barrier Fusion Dynamics of Various Heavy Ion Fusion Reactions. Braz J Phys 47, 461–472 (2017). https://doi.org/10.1007/s13538-017-0510-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0510-3

Keywords

Navigation