Skip to main content
Log in

Construction of Exchange-Correlation Potentials for Strongly Interacting One-Dimensional Systems

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

One-dimensional (1D) systems are useful laboratories aiming further improvement of electronic structure calculations. In order to simulate electron-electron interactions, two types of expressions are commonly considered: soft-Coulomb and exponential. For both cases, in the context of density-functional theory (DFT), 1D systems can be employed to gain insight into the ingredients accurate exchange-correlation (XC) density functionals must incorporate. A question of major interest is the treatment of strongly interacting situations, one of the main modern challenges for DFT. In this manuscript, we propose a generalization of preexisting XC potentials which can be applied to investigate the transition from weak to strong interactions. Specifically, we employ the intriguing behavior of electrons confined in one dimension: the spin-charge separation, for which spin and charge are decoupled to form two independent quasiparticles, spinons, and chargons. By means of Friedel oscillations, our results indicate it is possible to reproduce the weak-strong interaction transition by using a simple strategy we name, from previous works, spin-charge separation correction (SCSC). In addition, SCSC also yields good results in reproducing the constancy of the highest occupied Kohn-Sham eigenvalues upon fractional electron charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)

    Article  ADS  Google Scholar 

  2. K. Capelle, Braz. J. Phys. 36, 1318 (2006)

    Article  ADS  Google Scholar 

  3. A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112, 289 (2012)

    Article  Google Scholar 

  4. B.J. Kim, H. Koh, E. Rotenberg, S.-J. Oh, H. Eisaki, N. Motoyama, S. Uchida, T. Tohyama, S. Maekawa, Z.-X. Shen, C. Kim, Nat. Phys. 2, 397 (2006)

    Article  Google Scholar 

  5. J. Schlappa, K. Wohlfeld, K.J. Zhou, M. Mourigal, M.W. Haverkort, V.N. Strocov, L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J.-S. Caux, L. Patthey, H.M. Rønnow, J. van den Brink, T. Schmitt, Nature. 485, 82 (2012)

  6. N. Helbig, J.I. Fuks, M. Casula, M.J. Verstraete, M.A.L. Marques, I.V. Tokatly, A. Rubio, Phys. Rev. A. 83, 032503 (2011)

    Article  ADS  Google Scholar 

  7. L.O. Wagner, E.M. Stoudenmire, K. Burke, S.R. White, Phys. Chem. Chem. Phys. 14, 8581 (2012)

    Article  Google Scholar 

  8. T.E. Baker, E.M. Stoudenmire, L.O. Wagner, K. Burke, S.R. White, Phys. Rev. B. 91, 235141 (2015)

    Article  ADS  Google Scholar 

  9. J. Luttinger, J. Math. Phys. 4, 1154 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  10. F. Haldane, J. Phys. C. 14, 2585 (1981)

    Article  ADS  Google Scholar 

  11. T. Giamarchi. Quantum physics in one dimension (Oxford University Press, Oxford, 2003)

    Book  MATH  Google Scholar 

  12. F.J. Himpsel, K.N. Altmann, R. Bennewitz, J.N. Crain, A. Kirakosian, J.-L. Lin, J.L. McChesney, J. Phys. Condens. Matter. 13, 11097 (2001)

    Article  ADS  Google Scholar 

  13. Y. Jompol, C.J.B. Ford, J.P. Griffiths, I. Farrer, G.A.C. Jones, D. Anderson, D.A. Ritchie, T.W. Silk, A.J. Schofield, Science. 325, 597 (2009)

    Article  ADS  Google Scholar 

  14. D. Vieira, Phys. Rev. B. 86, 075132 (2012)

    Article  ADS  Google Scholar 

  15. D. Vieira, J. Chem. Theory Comput. 10, 3641 (2014)

    Article  Google Scholar 

  16. P. Elliott, A. Cangi, S. Pittalis, E.K.U. Gross, K. Burke, Phys. Rev. A. 92, 022513 (2015)

    Article  ADS  Google Scholar 

  17. A. Karolewski, R. Armiento, S. Kümmel, J. Chem. Theory Comput. 5, 712 (2009)

    Article  Google Scholar 

  18. M.J.T. Oliveira, E. Räsänen, S. Pittalis, M.A.L. Marques, J. Chem. Theory Comput. 6, 3664 (2010)

    Article  Google Scholar 

  19. K. Boguslawski, C.R. Jacob, M. Reiher, J. Chem. Phys. 138, 044111 (2013)

    Article  ADS  Google Scholar 

  20. A.P. Gaiduk, V.N. Staroverov, J. Chem. Phys. 136, 064116 (2012)

    Article  ADS  Google Scholar 

  21. P.D. Elkind, V.N. Staroverov, J. Chem. Phys. 136, 124115 (2012)

    Article  ADS  Google Scholar 

  22. J. Friedel, Philos. Mag. 43, 153 (1952)

    Article  Google Scholar 

  23. Y. Jia, B. Wu, C. Li, T.L. Einstein, H.H. Weitering, Z. Zhang, Phys. Rev. Lett. 105, 066101 (2010)

    Article  ADS  Google Scholar 

  24. R.F. Zhang, A.S. Argon, S. Veprek, Phys. Rev. Lett. 102, 015503 (2009)

    Article  ADS  Google Scholar 

  25. S. A. Söffing, M. Bortz, I. Schneider, A. Struck, M. Fleischhauer, S. Eggert, Phys. Rev. B. 79, 195114 (2009)

    Article  ADS  Google Scholar 

  26. H.J. Schulz, Phys. Rev. Lett. 71, 1864 (1993)

    Article  ADS  Google Scholar 

  27. S.R. White, I. Affleck, D.J. Scalapino, Phys. Rev. B. 65, 165122 (2002)

    Article  ADS  Google Scholar 

  28. G. Bedürftig, B. Brendel, H. Frahm, R.M. Noack, Phys. Rev. B. 58, 10225 (1998)

    Article  ADS  Google Scholar 

  29. F. Malet, P. Gori-Giorgi, Phys. Rev. Lett. 109, 246402 (2012)

    Article  ADS  Google Scholar 

  30. F. Malet, A. Mirtschink, J.C. Cremon, S.M. Reimann, P. Gori-Giorgi, Phys. Rev. B. 87, 115146 (2013)

    Article  ADS  Google Scholar 

  31. G. Xianlong, Phys. Rev. A. 86, 023616 (2012)

    Article  ADS  Google Scholar 

  32. A. Benítez, C.R. Proetto, Phys. Rev. A. 94, 052506 (2016)

    Article  ADS  Google Scholar 

  33. V.I. Yukalov, M.D. Girardeau, Laser Phys. Lett. 2, 375 (2005)

    Article  ADS  Google Scholar 

  34. N. Helbig, I.V. Tokatly, A. Rubio, J. Chem. Phys. 131, 224105 (2009)

    Article  ADS  Google Scholar 

  35. A.J. Cohen, P. Mori-Sánchez, W. Yang, Science. 321, 792 (2008)

    Article  ADS  Google Scholar 

  36. C. Li, X. Zheng, A.J. Cohen, P. Mori-Sánchez, W. Yang, Phys. Rev. Lett. 114, 053001 (2015)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz Jr., Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  38. J. Janak, Phys. Rev. B. 18, 7165 (1978)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian agencies CAPES and FAPESC for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vieira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, J.W.O., Vieira, D. Construction of Exchange-Correlation Potentials for Strongly Interacting One-Dimensional Systems. Braz J Phys 47, 393–399 (2017). https://doi.org/10.1007/s13538-017-0508-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0508-x

Keywords

Navigation