Skip to main content
Log in

Z-Scan Analysis: a New Method to Determine the Oxidative State of Low-Density Lipoprotein and Its Association with Multiple Cardiometabolic Biomarkers

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The great atherogenic potential of oxidized low-density lipoprotein has been widely described in the literature. The objective of this study was to investigate whether the state of oxidized low-density lipoprotein in human plasma measured by the Z-scan technique has an association with different cardiometabolic biomarkers. Total cholesterol, high-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A–I and apolipoprotein B, paraoxonase-1, and glucose were analyzed using standard commercial kits, and low-density lipoprotein cholesterol was estimated using the Friedewald equation. A sandwich enzyme-linked immunosorbent assay was used to detect electronegative low-density lipoprotein. Low-density lipoprotein and high-density lipoprotein sizes were determined by Lipoprint® system. The Z-scan technique was used to measure the non-linear optical response of low-density lipoprotein solution. Principal component analysis and correlations were used respectively to resize the data from the sample and test association between the θ parameter, measured with the Z-scan technique, and the principal component. A total of 63 individuals, from both sexes, with mean age 52 years (±11), being overweight and having high levels of total cholesterol and low levels of high-density lipoprotein cholesterol, were enrolled in this study. A positive correlation between the θ parameter and more anti-atherogenic pattern for cardiometabolic biomarkers together with a negative correlation for an atherogenic pattern was found. Regarding the parameters related with an atherogenic low-density lipoprotein profile, the θ parameter was negatively correlated with a more atherogenic pattern. By using Z-scan measurements, we were able to find an association between oxidized low-density lipoprotein state and multiple cardiometabolic biomarkers in samples from individuals with different cardiovascular risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Statistics 2012. (Publishing World Health Organization 2012), http://www.who.int/gho/publications/world_health_statistics/2012/en/. Accessed 6 August 2015.

  2. Prevention of cardiovascular disease. Guidelines for assessment and management of cardiovascular risk. (Publishing World Health Organization 2007), http://www.who.int/cardiovascular_diseases/guidelines/PocketGL.ENGLISH.AFR-D-E.rev1.pdf. Accessed 6 August 2015.

  3. T.A. Pearson, S.N. Blair, S.R. Daniels, R.H. Eckel, J.M. Fair, S.P. Fortmann, B.A. Franklin, L.B. Goldstein, P. Greenland, S.M. Grundy, Y. Hong, N.H. Miller, R.M. Lauer, I.S. Ockene, R.L. Sacco, J.F. Sallis Jr., S.C. Smith Jr., N.J. Stone, K.A. Taubert, Circulation 16, 388 (2002)

    Article  Google Scholar 

  4. S. Toshima, A. Hasegawa, M. Kurabayashi, H. Itabe, T. Takano, J. Sugano, K. Shimamura, J. Kimura, I. Michishita, T. Suzuki, R. Nagai, Arterioscl Throm Vas 20, 2243 (2000)

    Article  Google Scholar 

  5. J.A. Oliveira, A. Sevanian, R.J. Rodrigues, E. Apolinário, D.S.P. Abdalla, Clin Biochem 39, 708 (2006)

    Article  Google Scholar 

  6. A.D. Sniderman, K. Williams, J.H. Contois, H.M. Monroe, M.J. McQueen, J. De Graaf, C.D. Furberg, Circ Cardiovasc Qual Outcomes 4, 337 (2011)

    Article  Google Scholar 

  7. P.J. Barter, K.A. Rye, J Intern Med 259, 447 (2006)

    Article  Google Scholar 

  8. D. Steinberg, S. Parthasarathy, T.E. Carew, J.C. Khoo, J.L. Witztum, N. Engl, J Med 320, 915 (1989)

    Google Scholar 

  9. A. Sevanian, L. Asatryan, O. Ziozenkova, Blood Purif 17, 66 (1999)

    Article  Google Scholar 

  10. P. Avogaro, G.B. Bon, G. Cazzolato, Atheroscl Throm Vas 8, 79 (1988)

    Article  Google Scholar 

  11. H. Esterbauer, J. Gebicki, H. Puhl, G. Jürgens, Free Radic Biol Med 13, 341 (1992)

    Article  Google Scholar 

  12. G. Camejo, E. Hurt-Camejo, O. Wiklund, G. Bondjers, Atherosclerosis 139, 205 (1998)

    Article  Google Scholar 

  13. J.L. Sánchez-Quesada, S. Benítez, J. Ordóñez-Llanos, Curr Opin Lipidol 15, 329 (2004)

    Article  Google Scholar 

  14. J.L. Sánchez-Quesada, M. Camacho, R. Antón, S. Benítez, S. Vila, J. Ordóñez-Llanos, Atherosclerosis 166, 261 (2003)

    Article  Google Scholar 

  15. S.L. Gómez, F.L.S. Cuppo, A.M. Figueiredo Neto, T. Kosa, M. Muramatsu, R.J. Horowicz, Phys Rev 59, 3059 (1999)

    Google Scholar 

  16. S.E. Braslavsky, G.E. Heibel, Chem Rev 92, 1381 (1992)

    Article  Google Scholar 

  17. F.L.S. Cuppo, A.M. Figueiredo Neto, S.L. Gómez, P. Palffy-Muhoray, J Opt Soc Am 19, 1342 (2002)

    Article  Google Scholar 

  18. S.L. Gómez, R.F. Turchiello, M.C. Jurado, P. Boschcov, M. Gidlund, A.M. Figueiredo Neto, Chem Phys Lipids 132, 185 (2004)

    Article  Google Scholar 

  19. C.L. Oliveira, P.R. Santos, A.M. Monteiro, A.M. Figueiredo Neto, Biophys J 106, 2595 (2014)

    Article  Google Scholar 

  20. P.R. Santos, T.C. Genaro-Mattos, A.M. Monteiro, S. Miyamoto, A.M. Figueiredo Neto, J Biomed Opt 17, 105003 (2012)

    Article  Google Scholar 

  21. W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Clin Chem 18, 499 (1972)

    Google Scholar 

  22. M.I. Mackness, S. Arrol, P.N. Durrington, FEBS LETT 286, 152 (1991)

    Article  Google Scholar 

  23. T.E. Faulin, K.C. Sena-Evangelista, D.B. Pacheco, E.M. Augusto, D.S.P. Abdalla, Clin Chim Acta 413, 291 (2012)

    Article  Google Scholar 

  24. S. Alves, A.M. Figueiredo Neto, Liq Cryst 41, 465 (2014)

    Article  Google Scholar 

  25. W.O. Bussad, P.A. Morettin, Basics statistics, 5th edn. (Saraiva Publisher, Sao Paulo, Brazil, 2004)

    Google Scholar 

  26. J. Lenin, Statistics applied to human science, 2nd edn. (Harbra Publisher, Sao Paulo, Brazil, 1987)

    Google Scholar 

  27. J.F. Hair Jr., W.C. Black, B.J. Babin, R.E. Anderson, R.L. Tatham, Multivariate data analysis, 2nd edn. (Upper Saddle River, NJ, 2006)

    Google Scholar 

  28. H.F. Kaiser, Educ Psychol Meas 20, 141 (1960)

    Article  Google Scholar 

  29. I.B.M. Corp, IBM SPSS Statistics for Windows, Version 20.0 (IBM Corp released, Armonk, NY, 2011)

    Google Scholar 

  30. T. Hevonoja, M.O. Pentikäinen, M.T. Hyvönen, P.T. Kovanen, M. Ala-Korpela, Biochim Biophys Acta 1488, 189 (2000)

    Article  Google Scholar 

  31. N.J. Stone, J.G. Robinson, A.H. Lichtenstein, C.N. Bairey Merz, C.B. Blum, R.H. Eckel, A.C. Goldberg, D. Gordon, D. Levy, D.M. Lloyd-Jones, P. McBride, J.S. Schwartz, S.T. Shero, S.C. Smith Jr., K. Watson, P.W. Wilson, Circulation 129, S1–45 (2013)

    Article  Google Scholar 

  32. N. Sarwar, J. Danesh, G. Eiriksdottir, G. Sigurdsson, N. Wareham, S. Bingham, S.M. Boekholdt, K.T. Khaw, V. Gudnason, Circulation 115, 450 (2006)

    Article  Google Scholar 

  33. P.J. Barter, Arterioscl Throm Vas 20, 2029 (2000)

    Article  Google Scholar 

  34. D. Nikolic, N. Katsiki, G. Montalto, E.R. Isenovic, D.P. Mikhailidis, M. Rizzo, Nutrients 5, 928 (2013)

    Article  Google Scholar 

  35. F. Wan, X. Qin, G. Zhang, X. Lu, Y. Zhu, H. Zhang, B. Dai, G. Shi, D. Ye, Tumour Biol 36, 3573 (2015)

    Article  Google Scholar 

  36. F. Javadi, S. Eghtesadi, A. Ahmadzadeh, N. Aryaeian, M. Zabihiyeganeh, A.R. Foroushani, S. Jazayeri, Int J Prev Med 5, 293 (2014)

    Google Scholar 

  37. H.M. Ahmad, E.M. Sarhan, U. Komber, Rheumatol Int 34, 617 (2014)

    Article  Google Scholar 

  38. A.M. Monteiro, M.A. Jardini, V. Giampaoli, S. Alves, A.M. Figueiredo Neto, M. Gidlund, J Biomed Opt 17, 115004 (2012)

    Article  Google Scholar 

  39. A.P.Q. Mello, I.T. Silva, D.S.P. Abdalla, N.R.T. Damasceno, Atherosclerosis 215, 257 (2011)

    Article  Google Scholar 

  40. P.J. Barter, S. Nicholls, K.A. Rye, G.M. Anantharamaiah, M. Navab, A.M. Fogelman, Circ Res 95, 764 (2004)

    Article  Google Scholar 

  41. A. von Eckardstein, J.R. Nofer, G. Assmann, Arterioscl Throm Vas 21, 13 (2001)

    Article  Google Scholar 

  42. L. Camont, M.J. Chapman, A. Kontush, Trends Mol. Med.17, 594 (2011)

Download references

Acknowledgments

Antonio Martins Figueiredo Neto received grant support from the National Institute of Science and Technology Complex Fluids (INCT-FCx, 2010–2014), Research Nucleus Support in Complex Fluids at the University of Sao Paulo (NAP-FCx, 2011), and Support Foundation Research of Sao Paulo State (FAPESP-2011/13616-4). Nagila Raquel Teixeira Damasceno received grant support from Support Foundation Research of Sao Paulo State (FAPESP-2011/12523-2). Maria Camila Pruper de Freitas received grant scholarship from Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Camila Pruper de Freitas or Nágila Raquel Teixeira Damasceno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, M.C.P., Figueiredo Neto, A.M., Giampaoli, V. et al. Z-Scan Analysis: a New Method to Determine the Oxidative State of Low-Density Lipoprotein and Its Association with Multiple Cardiometabolic Biomarkers. Braz J Phys 46, 163–169 (2016). https://doi.org/10.1007/s13538-015-0395-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0395-y

Keywords

Navigation