Skip to main content
Log in

Enhancement of Space Plasma Images by Complex Wavelets

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The Sun is a natural laboratory for plasma processes. A myriad of instruments aboard satellites and on ground record(ed) the plasma emission in different ranges of the electromagnetic spectrum to help understand such processes. In particular, in the outer part of the solar atmosphere, the solar corona, we can observe a multitude of electrodynamical phenomena. There, the faint corona emission and the associated dynamic plasma structures (e.g., coronal mass ejections—CMEs) recorded in white-light images can be used as basis for some insight of this physical scenario. In order to characterize the dynamics and morphology of such structures in a better way, it seems crucial that some features of those images should be enhanced. To deal with this need, a new approach using a complex wavelet transform methodology was developed. With the proposed methodology, we can highlight the plasma ejections improving the identification of those structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://stereo.gsfc.nasa.gov/

  2. http://sdo.gsfc.nasa.gov/

  3. http://www-sigproc.eng.cam.ac.uk/Main/NGK

References

  1. J.-P. Antoine, R. Murenzi, P. Vandergheynst, S.T. Ali. Two dimensional wavelets and their relatives (Cambridge, 2008)

  2. G.E. Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, J.D. Moses, D.G. Socker, K.P. Dere, P.L. Lamy, A. Llebaria, M.V. Bout, R. Schwenn, G.M. Simnett, D.K. Bedford, C.J Eyles, The large angle spectroscopic coronagraph (LASCO). Sol. Phys. 162, 357–402 (1995)

    Article  ADS  Google Scholar 

  3. L. Burlaga, E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86(A8), 6673–6684 (1981)

    Article  ADS  Google Scholar 

  4. L.F. Burlaga, K.W. Behannon, L.W. Klein, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res. 92(A6), 5725–5734 (1987)

    Article  ADS  Google Scholar 

  5. J.P. Byrne, P.T. Gallagher, R.T.J. McAteer, C.A Young, The kinematics of coronal mass ejections using multiscale methods. A&A. 495(1), 325–334 (2009)

    Article  ADS  Google Scholar 

  6. H. Cremades, V. Bothmer, On the three-dimensional configuration of coronal mass ejections. A&A. 422, 307–322 (2004)

    Article  ADS  Google Scholar 

  7. H. Cremades, O.C. St. Cyr, G. Stenborg, Revealing the inside of coronal mass ejections. in SOHO-17. 10 Years of SOHO and Beyond, 617, ESA, (2006)

  8. I. Daubechies. Ten Lectures on Wavelets. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM, Philadelphia, 1992)

    Google Scholar 

  9. K.P. Dere, G.E. Brueckner, R.A. Howard, D.J. Michels, J.P. Delaboudiniere, LASCO and EIT observations of helical structure in coronal mass ejections. ApJ. 516(1), 465 (1999)

    Article  ADS  Google Scholar 

  10. E. Echer, W.D. Gonzalez, M.V. Alves, On the geomagnetic effects of solar wind interplanetary magnetic structures. Space Weather. 4(6) (2006)

  11. J.T. Gosling, E. Hildner, R.M. MacQueen, R.H. Munro, A.I. Poland, C.L. Ross, Mass ejections from the sun: a view from Skylab. J. Geophys. Res. 79(31), 4581–4587 (1974)

    Article  ADS  Google Scholar 

  12. J.C. Goswami, A.K. Chan. Fundamentals of Wavelets: Theory, Algorithms, and Applications, 2nd edn. (Wiley, 2011)

  13. T.A. Howard, D. Nandy, A.C. Koepke, Kinematic properties of solar coronal mass ejections: correction for projection effects in spacecraft coronagraph measurements. J. Geophys. Res. 113(A1), A01104 (2008)

    ADS  Google Scholar 

  14. R.M.E. Illing, A.J. Hundhausen, Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res. 90(A1), 275–282 (1985)

    Article  ADS  Google Scholar 

  15. N.G. Kingsbury, The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement. in European Signal Processing Conference, EUSIPCO 98. Rhodes, USA., pp. 319–322, (1998a)

  16. N.G. Kingsbury, The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters. in IEEE Digital Signal Processing Workshop DSP. Bryce Canyon, USA., pp. 319–322, (1998b)

  17. N.G. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmon. A. 10(3), 234–253 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Mallat. A Wavelet Tour of Signal Processing, (Wavelet Analysis & Its Applications), 2nd edn. (Academic Press, 1999)

  19. S.P. Plunkett, A. Vourlidas, S. Šimberová, M. Karlický, P. Kotrč, P. Heinzel, Y.A. Kupryakov, W.P. Guo, S.T. Wu, Simultaneous SOHO and ground-based observations of a large eruptive prominence and coronal mass ejection. Sol. Phys. 194, 371–391 (2000)

    Article  ADS  Google Scholar 

  20. I.W. Selesnick, R.G. Baraniuk, N.G Kingsbury, The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  ADS  Google Scholar 

  21. G. Stenborg, P.J. Cobelli, A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures. A&A. 398(3), 1185–1193 (2003)

    Article  ADS  Google Scholar 

  22. G. Stenborg, A. Vourlidas, R.A. Howard, A fresh view of the extreme-ultraviolet corona from the application of a new image-processing technique. ApJ. 674, 1201–1206 (2008)

    Article  ADS  Google Scholar 

  23. D. Tripathi, G. Stenborg, On the internal structures of coronal mass ejections. in The Dynamic Sun: Challenges for Theory and Observations. 600, ESA, (2005)

Download references

Acknowledgments

The authors thank the grants provided by FAPESP 2014/ 21229-9, 2007/ 07723-7; CAPES 126/2012-83; CNPq 307511/2010-3, 312246/2013-7; the authors also thank ESA and NASA for providing the SOHO/ LASCO images used in this work. SOHO is a project of international collaboration between the European Space Agency (ESA) and NASA. The authors are grateful to Eng. Varlei Menconi by the computational assistance (FAPESP 2008/09736-1, CNPq 302451/2013-7), and Prof. Dr. Nick Kingsbury for the fruitful scientific discussions, the codes, and the lectures given in the Workshop in Wavelet Applications (WWLET-2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Moura Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, V.M., Domingues, M.O., Mendes, O. et al. Enhancement of Space Plasma Images by Complex Wavelets. Braz J Phys 45, 510–517 (2015). https://doi.org/10.1007/s13538-015-0349-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0349-4

Keywords

Navigation