Skip to main content
Log in

Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Bohm, D. Pines. Phys. Rev. 92, 609 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. D. Pines. Phys. Rev. 92(626) (1953)

  3. P. Levine, O.V. Roos. Phys. Rev. 125, 207 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. L.D. Landau, E.M. Lifshitz. Statistical physics Part I (Pergamon, Oxford, 1978)

    Google Scholar 

  5. H. Haug, S.W. Koch. Quantum theory of the optical and electronic properties of semiconductors (World Scientific, London, 2004)

    Book  Google Scholar 

  6. P.K. Shukla, B. Eliasson. Rev. Mod. Phys. 83, 885 (2011)

    Article  ADS  Google Scholar 

  7. F. Haas, Quantum plasmas: An hydrodynamic approach. (Springer Series on atomic, optical, and plasma physics 65, New York, 2011).

  8. S. Chandrasekhar. Mon. Not. R. Astron. Soc. 95(81), 207 (1935)

    Article  ADS  Google Scholar 

  9. L. Shapiro, S.A. Teukolsky. Black holes, white dwarfs, neutron stars: the physics of compact objects (John Wiley and Sons, New York, 1973)

    Google Scholar 

  10. D. Koester, G. Chanmugam. Rep. Prog. Phys. 53, 837 (1990)

    Article  ADS  Google Scholar 

  11. P.A. Bradley, P.E. Winget, M.A. Wood. Astrophys. J. 406, 661 (1993)

    Article  ADS  Google Scholar 

  12. G.A. Mourou, T. Tajima, S.V. Bulanov. Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  13. W. F. El-Taibany, M. Wadati. Phys. Plasmas. 14, 042302 (2007)

    Article  ADS  Google Scholar 

  14. S. Mahmood, S. Sadiq, Q. Haque. Phys. Plasmas. 20, 122305 (2013)

    Article  ADS  Google Scholar 

  15. M. Akbari-Moghanjoughi. Phys. Plasmas 17, 092304 (2010)

    Article  ADS  Google Scholar 

  16. P.K. Shukla, B. Eliasson, L. Stenflo. Phys. Rev. E. 84, 037401 (2011)

    Article  ADS  Google Scholar 

  17. W.F. El-Taibany, A.A. Mamun. Phys. Rev. E. 85, 026406 (2012)

    Article  ADS  Google Scholar 

  18. W.F. El-Taibany, A.A. Mamun, Kh. H. El-Shorbagy. Adv. Space Res. 50, 101 (2012)

    Article  ADS  Google Scholar 

  19. L. Nahar, M.S. Zobaer, N. Roy, A.A. Mamun. Phys. Plasmas. 20, 022304 (2013)

    Article  ADS  Google Scholar 

  20. M.A. Hossen, M.R. Hossen, A.A. Mamun. J. Korean Phys. Soc. 65, 1883 (2014)

    Article  ADS  Google Scholar 

  21. M.R. Hossen, A.A. Mamun, Braz. J. Phys. (2015) 10.1007/s13538-014-0297-4

  22. H. Washimi, T. Taniuti. Phys. Rev. Lett. 17, 996 (1966)

    Article  ADS  Google Scholar 

  23. L. Stenflo, P.K. Shukla, M.Y. Yu. Astrophys. Space Sci. 117, 303 (1985)

    Article  ADS  MATH  Google Scholar 

  24. F.B. Rizzato. J. Plasma Phys. 40, 289 (1988)

    Article  ADS  Google Scholar 

  25. N.L. Shatashvili, J.I. Javakhishvili, H. Kaya. Astrophys. Space Sci. 250, 109 (1997)

    Article  ADS  MATH  Google Scholar 

  26. N.L. Shatashvili, N.N. Rao. Phys. Plasmas. 6, 66 (1999)

    Article  ADS  Google Scholar 

  27. C.M. Surko, M. Levethal, W.S. Crane, A. Passner, F. Wysocki. Rev. Sci. Instrum. 57, 1862 (1986)

    Article  ADS  Google Scholar 

  28. M.D. Tinkle, R.G. Greaves, C.M. Surko, R.L. Spencer, G.W. Mason. Phys. Rev. Lett. 72, 352 (1994)

    Article  ADS  Google Scholar 

  29. G. Gahn, G.D. Tsakiris, G. Pretzler, K.J. Witte, C. Delfin, C.-G. Wahlström, D. Habs. Appl. Phys. Lett. 77, 2662 (2000)

    Article  ADS  Google Scholar 

  30. T. Piran. Phys. Rep. 314, 575 (1999)

    Article  ADS  Google Scholar 

  31. E. Tandberg-Hansen, A.G. Emslie. The Physics of Solar Flares (Cambridge University Press Cambridge, 1988)

  32. S.I. Popel, S.V. Vladimirov, P.K. Shukla. Phys. Plasmas. 2, 716 (1995)

    Article  ADS  Google Scholar 

  33. S.A. Khan, M.K. Ayub, A. Ahmad. Phys. Plasmas. 19, 102104 (2012)

    Article  ADS  Google Scholar 

  34. S.A. Khan, M. Ilyas, Z. Wazir, Z. Ehsan. Astrophys. Space Sci. 352, 559 (2014)

    Article  ADS  Google Scholar 

  35. O. Andriani, et al. PAMELA Collaboration, Nature. 458, 607 (2008)

    Google Scholar 

  36. O. Adriani, et al., PAMELA collaboration. Astropart. Phys. 34, 1 (2010)

    Article  ADS  Google Scholar 

  37. O. Adriani, et al., PAMELA collaboration. Phys. Rev. Lett. 106, 201101 (2011)

    Article  ADS  Google Scholar 

  38. O. Adriani, et al., PAMELA collaboration. Phys. Rev. Lett. 111, 081102 (2013)

    Article  ADS  Google Scholar 

  39. A.A. Abdo, et al., Fermi LAT Collaboration. Phys. Rev. Lett. 102, 181101 (2009)

    Article  ADS  Google Scholar 

  40. M. Ackermann, Fermi LAT Collaboration. Phys. Rev. D. 82, 092004 (2010)

    Article  ADS  Google Scholar 

  41. K. Kashiyama, K. Ioka. AIP Conf. Proc. 1279, 352 (2010)

    Article  ADS  Google Scholar 

  42. K. Kashiyama, K. Ioka, N. Kawanaka. Phys. Rev. D. 83, 023002 (2011)

    Article  ADS  Google Scholar 

  43. P.D. Serpico. Astropart. Phys. 39, 2 (2012)

    Article  ADS  Google Scholar 

  44. R.S. Tiwari, M. K. Mishra. Phys. Plasmas. 13, 062112 (2006)

    Article  ADS  Google Scholar 

  45. R.S. Tiwari, A. Kaushik, M. K. Mishra. Phys. Lett. A. 365, 335 (2007)

    Article  ADS  Google Scholar 

  46. A. Esfandyari-Kalejahi, M. Akbari-Moghanjoughi, B. Haddadpour-Khiaban. Phys. Plasmas. 16, 102302 (2009)

    Article  ADS  Google Scholar 

  47. P. Chatterjee, K. Roy, G. Mondal, S. V. Muniandy, S. L. Yap, C. S. Wong. Phys. Plasmas. 16, 122112 (2009)

    Article  ADS  Google Scholar 

  48. M. Akbari-Moghanjoughi. Phys. Plasmas. 17, 052302 (2010)

    Article  ADS  Google Scholar 

  49. M. Mehdipoor, A. Esfandyari-Kalejahi. Astrophys. Space Sci. 342, 93 (2012)

    Article  ADS  Google Scholar 

  50. Y. Kodama, T. Taniuti. Phys, J. Soc. Jpn. 45, 298 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  51. A.A. Mamun, P.K. Shukla, D.A. Mendis. J. Plasma Phys. 78, 143 (2012)

    Article  ADS  Google Scholar 

  52. A.A. Mamun, N. Roy, P.K. Shukla. J. Plasma Phys. 78, 683 (2012)

    Article  ADS  Google Scholar 

  53. S.K. El-Labany. J. Plasma Phys. 50, 495 (1993)

    Article  ADS  Google Scholar 

  54. S. Hussain, S. Mahmood, A. Pasqua. Phys. Lett. 377, 2105 (2013)

    Article  MathSciNet  Google Scholar 

  55. S. Sadiq, S. Mahmood, Q. Haque, M. Z. Ali. Astrophys. J. 793, 27 (2014)

    Article  ADS  Google Scholar 

  56. H.M. Van Horn. Phys. Today. 32, 23 (1979)

    Article  ADS  Google Scholar 

  57. W. Masood, A. Mushtaq. Phys. Lett. A. 372, 4283 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. F. El-Taibany.

Appendix

Appendix

The expressions of the coefficients appeared in Eqs. 1416 are

$$\begin{array}{@{}rcl@{}} E & =-\frac{2D\lambda\sin\theta}{{\alpha_{2}^{2}}}\text{, }F=\frac{1} {2\alpha_{2}}-\frac{A\lambda\sin\theta}{{\alpha_{2}^{2}}}+\frac{\sin^{2}\theta }{2{\alpha_{2}^{3}}}\left( 3\lambda^{2}-\alpha_{2}-\frac{\beta}{3}\right) ,\\ G & =E\lambda+\frac{D\sin\theta}{\alpha_{2}}\text{, }H=F\lambda -\frac{\lambda\sin^{2}\theta}{{\alpha_{2}^{2}}}+\frac{A\sin\theta}{2\alpha_{2} }\text{,}\\ I & =\cos\theta\left[ \frac{D}{\lambda^{2}}-\frac{\upmu\lambda\left( 1-\upmu\right) }{\alpha_{2}}\right] \text{.} \end{array} $$

The expressions of those presented in Eqs. 17 and 18 are

$$\begin{array}{@{}rcl@{}} J & =\frac{\left( \upmu-D_{\upmu}\right) D-L\cos\theta}{\lambda} ,~K=\frac{\left[ \left( \upmu-D_{\upmu}\right) A-M\cos\theta\right] }{\lambda }-\frac{\upmu\sin\theta}{\alpha_{2}},\\ L & =\frac{\eta}{\lambda}\left[ \frac{\upmu\lambda^{3}}{\alpha_{2}} -\frac{D\nu_{2}}{\nu_{1}}\right] ,~M=-\frac{\eta}{\nu_{1}}\left[ \frac {A\nu_{2}}{\lambda}-\frac{\sin\theta\cos^{2}\theta}{\alpha_{2}}\right] . \end{array} $$

Finally, the coefficients appeared within the source term, (24), are

$$\begin{array}{@{}rcl@{}} R_{1} &=&-\frac{1}{H_{1}}\left[ \left( \sin^{2}\theta/\alpha_{2}\right) \left( \cos^{2}\theta+\lambda^{2}\left\{ -1+\left( \sin^{2}\theta /\alpha_{2}\right)\right.\right.\right.\\ &&\left.\left.\left.+\left[ 2\sin^{2}\theta/\left( 9\beta\alpha_{2}^{2}\right) \right]\right\} \right) -\left( A/\lambda\right) \sin\theta\cos^{2}\theta\right. \\ && + F\left\{ \beta\left[ \cos^{2}\theta+2\left( \lambda^{2} /\alpha_{2}\right) \sin^{2}\theta\right]-\lambda^{2}\right\}\\ &&\left.+H\left[ \left( \alpha_{2}/\lambda\right) \left( 3\lambda^{2}+\cos^{2}\theta\right) +3\left(\alpha_{1/}\alpha_{2}\right) \lambda\sin^{2}\theta\right] \right],\\ R_{2} & =&-\frac{1}{H_{1}}\left\{3\alpha_{2}\lambda\left( K\lambda +M\upmu\cos\theta\right) -\lambda^{2}\sin\theta\left[ {\upmu}^{2}-\eta^{2}\right. \right. \\ &&\left.\left.+D_{\upmu}\left( 1-\upmu\right) \right] +E\left( \beta\left\{ \cos^{2}\theta+2\left[ \left( \lambda^{2}\sin^{2}\theta\right) /\left(3\alpha_{2}\right) \right] \right\}\right.\right.\\&&\left.\left. -\lambda^{2}\right) \right\} ,\\ R_{3} & =&-\frac{1}{H_{1}}\left\{\alpha_{2}\lambda\left( \lambda K+M\upmu\cos\theta\right) -\lambda^{2}\sin\theta\left[ 2{\upmu}^{2}+D_{\upmu}\left(1-2\upmu\right) \right]\right.\\ &&\left. +G\lambda\left[ \alpha_{2}+\left( \alpha_{1}/\alpha_{2}\right) \sin^{2}\theta\right] \right. \\ && \left.+ \left[ 2/\left( 3\alpha_{2}\right) \right] E\beta\lambda^{2}\sin^{2}\theta-\lambda I\sin\theta\cos\theta\right\} ,\\ R_{4} & =&-\frac{\alpha_{2}\lambda}{H_{1}}\left( \lambda J+\upmu L\cos \theta\right), \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Labany, S.K., El-Taibany, W.F., El-Samahy, A.E. et al. Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma. Braz J Phys 45, 409–418 (2015). https://doi.org/10.1007/s13538-015-0327-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0327-x

Keywords

Navigation