Skip to main content
Log in

FP-LMTO calculations of the structural, elastic, thermodynamic, and electronic properties of the ideal-cubic perovskite BiGaO3

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Using the first-principles full-potential linear muffin-tin orbital method within the local density approximation, we have studied the structural, elastic, thermodynamic, and electronic properties of the ideal-cubic perovskite BiGaO3. It is found that this compound has an indirect band gap. The valence band maximum (VBM) is located at Γ-point, whereas the conduction band minimum (CBM) is located at X-point. The pressure and volume dependences of the energy band gaps have been calculated. The elastic constants at equilibrium are also determined. We derived the bulk and shear moduli, Young’s modulus, and Poisson’s ratio. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of the bulk modulus, heat capacities, and Debye temperature with pressure and temperature are successfully obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.B. Samantaray, H. Sim, H. Hwang, Microelectron. J. 36(8), 725 (2005)

    Article  Google Scholar 

  2. C.B. Samantaray, H. Sim, H. Hwang, Physica B 351(1–2), 158 (2004)

    Article  ADS  Google Scholar 

  3. J.G. Bednorz, K.A. Müller, Phys. Rev. Lett. 52(25), 2289 (1984)

    Article  ADS  Google Scholar 

  4. H.P.R. Frederikse, W.R. Thurber, W.R. Hosler, Phys. Rev. 134(2A), A442 (1964)

    Article  ADS  Google Scholar 

  5. C.S. Koonce, M.L. Cohen, J.F. Schooley, W.R. Hosler, E.R. Pfeiffer, Phys. Rev. 163(2), 380 (1967)

    Article  ADS  Google Scholar 

  6. V.E. Henrich, Rep. Prog. Phys. 11, 1481 (1985)

    Article  ADS  Google Scholar 

  7. P. Baettig, C.F. Schelle, R. LeSar, U.V. Waghmare, N.A. Spaldin, Chem. Mater. 17(6), 1376 (2005)

    Article  Google Scholar 

  8. Y. Tokura (ed.), Advances in Condensed Matter Science, vol. 2 (Gordon and Breach, The Netherlands, 2000)

    Google Scholar 

  9. A.J. Millis, B.I. Shraiman, R. Mueller, Phys. Rev. Lett. 77, 175 (1996)

    Article  ADS  Google Scholar 

  10. H. Muta, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 350, 292 (2003)

    Article  Google Scholar 

  11. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.-E. Park, Jpn. J. Appl. Phys. 1 40, 5999 (2001)

    Article  Google Scholar 

  12. R.E. Eitel, C.A. Randall, T.R. Shrout, S.-E. Park, Jpn. J. Appl. Phys. 1 41, 2099 (2002)

    Article  Google Scholar 

  13. S.J. Zhang, C.A. Randall, T.R. Shrout, Appl. Phys. Lett. 83, 3150 (2003)

    Article  ADS  Google Scholar 

  14. J. R. Cheng, W. Y. Zhu, N. Li, and L. E. Cross, Mater. Lett.57, (2003) 2090.

  15. R.R. Duan, R.F. Speyer, E. Alberta, T.R. Shrout, J. Mater. Res. 19, 2185 (2004)

    Article  ADS  Google Scholar 

  16. Y. Inaguma, A. Miyaguchi, M. Yoshida, T. Katsumata, Y. Shimojo, R.P. Wang, T. Sekiya, J. Appl. Phys. 95, 231 (2004)

    Article  ADS  Google Scholar 

  17. S.J. Zhang, R. Xia, C.A. Randall, T.R. Shrout, R.R. Duan, R.F. Speyer, J. Mater. Res. 20, 2067 (2005)

    Article  ADS  Google Scholar 

  18. P. Baettig, C.F. Schelle, R. LeSar et al., Chem. Mater. 17, 1376 (2005)

    Article  Google Scholar 

  19. H. Wang, B. Wang, Q. Li, Z. Zhu, R. Wang, C.H. Woo, Phys. Rev. B 75, 245209 (2007)

    Article  ADS  Google Scholar 

  20. H. Wang, B. Wang, R. Wang, Q.K. Li, Phys. B 390, 96 (2007)

    Article  ADS  Google Scholar 

  21. C. Li, B. Wang, R. Wang, H. Wang, X. Lu, Comput. Mater. Sci. 42, 614 (2008)

    Article  Google Scholar 

  22. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  23. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  24. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Savrasov, D. Savrasov, Phys. Rev. B 46, 12181 (1992)

    Article  ADS  Google Scholar 

  26. S.Y. Savrasov, Phys. Rev. B 54, 16470 (1996)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, Y. Wang, Phys. Rev. B46, 12947 (1992)

    Article  ADS  Google Scholar 

  28. P. Blochl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)

    Article  ADS  Google Scholar 

  29. F. Birch, J. Appl. Phys. 9, 279 (1938)

    Article  MATH  ADS  Google Scholar 

  30. M.J. Mehl, Phys. Rev. B 47, 2493 (1993)

    Article  ADS  Google Scholar 

  31. L. Kleinman, Phys. Rev. 128, 2614 (1962)

    Article  ADS  Google Scholar 

  32. J. Wang, S. Yip, Phys. Rev. Lett. 71, 4182 (1993)

    Article  ADS  Google Scholar 

  33. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928)

    MATH  Google Scholar 

  34. A. Russ, A. Angew, Mater. Phys. 9, 49 (1929)

    Google Scholar 

  35. R. Hill, Proc. Phys. Soc. Lond A 65, 349 (1952)

    Article  ADS  Google Scholar 

  36. J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001)

    Article  ADS  Google Scholar 

  37. M.B. Kanoun, S. Goumri-Said, A.H. Reshak, Comput. Mat. Sci. 47, 491 (2009)

    Article  Google Scholar 

  38. I.R. Shein, A.L. Ivanovskii, J. Phys.: Condens. Matter. 20, 415218 (2008)

    Google Scholar 

  39. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  40. H. Ledbetter, S. Kim, Handbook of Elastic Properties of Solids, Liquids and Gases (Vol. II) (Academic, San Deigo, 2001), p. 281

    Google Scholar 

  41. C.Z. Fan, S.Y. Zeng, L.X. Li, Z.J. Zhan, R.P. Liu, W.K. Wang, P. Zhang, Y.G. Yao, Phys. Rev. B 74, 125118 (2006)

    Article  ADS  Google Scholar 

  42. R. Yu, X.F. Zhang, Phys. Rev. B 72, 054103 (2005)

    Article  ADS  Google Scholar 

  43. H. Gou, L. Hou, J. Zhang, H. Li, G. Sun, F. Gao, Appl. Phys. Lett. 88, 221904 (2006)

    Article  ADS  Google Scholar 

  44. J.E. Lowther, J. Phys. Condens. Matter 17, 3221 (2005)

    Article  ADS  Google Scholar 

  45. Z. Liu, J. He, J. Yang, X. Guo, H. Sun, H. Wang, E. Wu, Y. Tian, Phys. Rev. B 73, 172101 (2006)

    Article  ADS  Google Scholar 

  46. X. Hao, Y. Xu, Z. Wu, D. Zhou, X. Liu, X. Cao, J. Meng, Phys. Rev. B 74, 224112 (2006)

    Article  ADS  Google Scholar 

  47. S. Chiodo, H.J. Gotsis, N. Russo, E. Sicilia, Chem. Phys. Lett. 425, 311 (2006)

    Article  ADS  Google Scholar 

  48. R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, R.B. Kaner, J. Am. Chem. Soc. 127, 7264 (2005)

    Article  Google Scholar 

  49. A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H.K. Mao, Phys. Rev. Lett. 96, 155501 (2006)

    Article  ADS  Google Scholar 

  50. R.B. Kaner, J.J. Gillman, A.H. Tolbert, Science 308, 1268 (2005)

    Article  Google Scholar 

  51. D.M. Teter, MRS Bull. 23, 22 (1998)

    Article  Google Scholar 

  52. X.-Q. Chen, H. Niu, D. Li, Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011)

    Article  Google Scholar 

  53. M.A. Blanco, E. Francisco, V. Luaña, Comput. Phys. Commun. 158, 7 (2004)

    Article  ADS  Google Scholar 

  54. M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, A. Martín Pendás, Phys. Rev. B 66, 44112 (2002)

    Article  Google Scholar 

  55. M.A. Blanco, A. Martín Pendás, E. Francisco, J.M. Recio, R. Franco, J. Mol. Struct. THEOCHEM 368, 45 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Rached.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourdassi, A., Benkhettou, N., Labair, M. et al. FP-LMTO calculations of the structural, elastic, thermodynamic, and electronic properties of the ideal-cubic perovskite BiGaO3 . Braz J Phys 44, 914–921 (2014). https://doi.org/10.1007/s13538-014-0262-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0262-2

Keywords

Navigation