Skip to main content
Log in

Bulk Viscous Cosmological Model with Interacting Dark Fluids

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We study a cosmological model for a spatially flat Universe whose constituents are a dark energy field and a matter field comprising baryons and dark matter. The constituents are assumed to interact with each other, and a non-equilibrium pressure is introduced to account for irreversible processes. We take the non-equilibrium pressure to be proportional to the Hubble parameter within the framework of a first-order thermodynamic theory. The dark energy and matter fields are coupled by their barotropic indexes, which depend on the ratio between their energy densities. We adjust the free parameters of the model to optimize the fits to the Hubble parameter data. We compare the viscous model with the non-viscous one, and show that the irreversible processes cause the dark-energy and matter-density parameters to become equal and the decelerated–accelerated transition to occur at earlier times. Furthermore, the density and deceleration parameters and the distance modulus have the correct behavior, consistent with a viable scenario of the present status of the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Perlmutter, et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. A.G. Riess, et al., Astrophys. J. 560, 49 (2001)

    Article  ADS  Google Scholar 

  3. M.S. Turner, A.G. Riess, Astrophys. J. 569, 18 (2002)

    Article  ADS  Google Scholar 

  4. J. Tonry, et al., Astrophys. J. 594, 1 (2003)

    Article  ADS  Google Scholar 

  5. M. Persic, P. Salucci, F. Stel, Mon. Not. Roy. Astron. Soc. 281, 27 (1996)

    ADS  Google Scholar 

  6. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  8. V. Sahni, in The Physics of the Early Universe, vol. 653. ed. by E. Papantonopoulos, Lect. Notes Phys. (Springer, Berlin, 2005)

    Google Scholar 

  9. S.M. Carroll, Living Rev. Rel. 4, 1 (2001)

    Google Scholar 

  10. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. P.J. Steinhardt, in Critical Problems in Physics, ed. by V.L. Fitch, D.R. Marlow, M.A.E. Dementi (Princeton University Press, Princeton, 1997)

    Google Scholar 

  14. L.P. Chimento, A.S. Jakubi, D. Pavon, Phys. Rev. D 62, 063508 (2000)

    Article  ADS  Google Scholar 

  15. L.P. Chimento, A.S. Jakubi, D. Pavon, W. Zimdahl, Phys. Rev. D 67, 083513 (2003)

    Article  ADS  Google Scholar 

  16. J.B. Binder, G.M. Kremer, Gen. Rel. Grav. 38, 857 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J.B. Binder, G.M. Kremer, Braz. J. Phys. 35, 1038 (2005)

    Article  Google Scholar 

  18. G.M. Kremer, Gen. Rel. Grav. 39, 965–972 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. G. Huey, B.D. Wandelt, Phys. Rev. D 74, 023519 (2006)

    Article  ADS  Google Scholar 

  20. L.P. Chimento, M. Forte, Phys. Lett. B 666, 205 (2008)

    Article  ADS  Google Scholar 

  21. R.G. Cai, A. Wang, JCAP 0503, 002 (2005)

    ADS  Google Scholar 

  22. Hao Wei, JCAP, 1008, 20 (2010)

    Google Scholar 

  23. L. Amendola, Phys. Rev. D 62, 043511 (2000)

    Article  ADS  Google Scholar 

  24. L. Amendola, D. Tocchini-Valentini, Phys. Rev. D 64, 043509 (2001)

    Article  ADS  Google Scholar 

  25. L. Amendola, D. Tocchini-Valentini, Phys. Rev. D 66, 043528 (2002)

    Article  ADS  Google Scholar 

  26. L. Amendola, C. Quercellini, D. Tocchini-Valentini, A. Pasqui, Astrophys. J. 583, L53 (2003)

    Article  ADS  Google Scholar 

  27. W. Zimdahl, D. Pavon, Phys. Lett. B 521, 133 (2001)

    Article  ADS  MATH  Google Scholar 

  28. D. Pavon, B. Wang, Gen. Rel. Grav. 41, 1 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. L.P. Chimento, Phys. Rev. D 81, 043525 (2010)

    Article  ADS  Google Scholar 

  30. G.L. Murphy, Phys. Rev. D. 8, 4231 (1973)

    Article  ADS  Google Scholar 

  31. Ø. Grøn, Astrophys. Space Sci. 173, 191 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  32. G.M. Kremer, F.P. Devecchi, Phys. Rev. D 65, 083515 (2002)

    Article  ADS  Google Scholar 

  33. V.A. Belinskiǐ, E.S. Nikomarov, I.M. Khalatnikov, Sov. Phys. JETP 50, 213 (1979)

    ADS  Google Scholar 

  34. V. Romano, D. Pavón, Phys. Rev. D 47, 1396 (1993)

    Article  ADS  Google Scholar 

  35. L.P. Chimento, A.S. Jakubi, Class. Quant. Grav. 10, 2047 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  36. A.A. Coley, R. J. van den Hoogen, Class. Quant. Grav. 12, 1977 (1995)

    Article  ADS  MATH  Google Scholar 

  37. W. Zimdahl, Phys. Rev. D 61, 083511 (2000)

    Article  ADS  Google Scholar 

  38. G.M. Kremer, Gen. Relat. Grav. 35, 1459 (2003)

    Article  ADS  MATH  Google Scholar 

  39. G.M. Kremer, Phys. Rev. D 68, 123507 (2003)

    Article  ADS  Google Scholar 

  40. G.M. Kremer, M.C.N. Teixeira da Silva, Braz. J. Phys. 34 1204 (2004)

    Article  Google Scholar 

  41. L.P. Chimento, M. Forte, G.M. Kremer, Gen. Rel. Grav. 41, 1125 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. C. Cercignani, G.M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications, (Birkhäuser, Basel, 2002)

    Book  MATH  Google Scholar 

  43. D. Pavón, B. Wang, Gen. Relativ. Grav. 41, 1 (2009)

    Article  ADS  MATH  Google Scholar 

  44. C. Ma, T.-J. Zhang, Astrophys. J. 730, 74 (2011)

    Article  ADS  Google Scholar 

  45. W.L. Freedman, et al., Astrophys. J. 553, 47 (2001)

    Article  ADS  Google Scholar 

  46. J.M. Virey, et al., Phys. Rev. D 72, 061302 (2005)

    Article  ADS  Google Scholar 

  47. A.G. Riess, et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  48. M. Hicken, et al., Astrophys. J. 700, 1097–1140 (2009)

    Article  ADS  Google Scholar 

  49. G.M. Kremer, F.P. Devecchi, Phys. Rev. D 66, 063503 (2002)

    Article  ADS  Google Scholar 

  50. G.M. Kremer, F.P. Devecchi, Phys. Rev. D 67, 047301 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

GMK acknowledges fruitful discussions with Luis P. Chimento and Mónica Forte and the support by the CNPq. OASS acknowledges support by the CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto M. Kremer.

Appendix: Bayesian Inference

Appendix: Bayesian Inference

In a statistical sense, a physical model may be thought of as described by a set of parameters. These parameters may be determined in many ways; most commonly, one resorts to Bayesian inference, a well-established statistical inference procedure, which estimates model parameters on the basis of evidence. The main purpose of this section is to present a brief introduction to the subject.

For a given model and data set, Bayesian inference employs a probability distribution called posterior probability to summarize all uncertainty. This probability distribution is proportional to a prior probability distribution (or simply the prior) and a likelihood function. The later, denoted by \(\mathcal{P}(\mathbf{D}|\mathbf{\theta})\), is usually defined as the unnormalized probability density of measuring the data D = {D 1,D 2,...,D n } for a given model \(\mathcal{M}\) in terms of its parameters θ = { θ 1 2 ,...,θ n }. For our purposes, it suffices to assume that the measured values are normally distributed around their true value, so that

$$ \mathcal{P}(\mathbf{D}|\mathbf{\theta}) \propto \exp \left[-\chi^{2}(\mathbf{\theta})/2 \right].\label{eq:4} $$
(22)

The posterior \(\mathcal{P}(\theta|\mathbf{D})\) is determined by Bayes’ theorem:

$$ \mathcal{P}(\theta|\mathbf{D})=\frac{\mathcal{P}(\mathbf{D}|\theta) \mathcal{P}(\theta)}{\int {\rm d}\theta \mathcal{P}(\mathbf{D}|\theta)\mathcal{P}(\theta)},\label{eq:5} $$
(23)

where \(\mathcal{P}(\theta)\) denotes the prior probability distribution. The prior carries all previous knowledge of the parameters before the measurements were made.

Bayesian inference estimates parameters by maximizing the posterior \(\mathcal{P}(\theta|\mathbf{D})\). This is in contrast with the frequentist approach, which maximizes the likelihood \(\mathcal{P}(\mathbf{D}|\mathbf{\theta})\). Nevertheless, whenever the so-called uninformative priors are considered, both frameworks lead to the same conclusions. If the measured data are independent from each other as well as Gaussian distributed around their true value, D(θ), then maximizing the likelihood \(\mathcal{P}(\mathbf{D}|\mathbf{\theta})\) is equivalent to minimizing the chi-square function

$$ \chi^{2}(\theta) \equiv \left(\mathbf{D}^{\rm obs}-\mathbf{D}(\theta)\right) C^{-1}\left(\mathbf{D}^{\rm obs}-\mathbf{D}(\theta)\right)^{T},\label{eq:6} $$
(24)

where C is the covariance matrix given by the experimental errors. For uncorrelated data, \(C_{ij}=\delta_{ij}\sigma^{2}_{i}\) and

$$ \chi^{2}(\theta) \equiv \sum\limits_{i=1}^{n}\left(\frac{D^{\rm obs}-D(\theta)}{\sigma^{2}_{i}}\right)^{2}, \label{eq:7} $$
(25)

where σ i denotes the experimental errors.

In Bayesian inference, confidence intervals are drawn around the maximal likelihood point, which yields the best fit parameters. It is conventionally used 1σ and 2σ confidence regions with 68.3% and 95.4% probability, respectively, for the true value of parameters. These regions are mathematically defined by the inequalities

$$ \chi^{2}(\theta)-\chi^{2}(\theta_{\rm bf}) \leq 2.3,\label{eq:8} $$
(26)

for the 1σ range and

$$ \chi^{2}(\theta)-\chi^{2}(\theta_{\rm bf}) \leq 6.17,\label{eq:9} $$
(27)

for the 2σ range, where θ bf denotes the best-fit value of parameters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kremer, G.M., Sobreiro, O.A.S. Bulk Viscous Cosmological Model with Interacting Dark Fluids. Braz J Phys 42, 77–83 (2012). https://doi.org/10.1007/s13538-011-0051-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-011-0051-0

Keywords

Navigation