Skip to main content
Log in

Analysis of functional electrical stimulation parameters by muscular contraction time and knee joint angular variation

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

In the present study, five FES profiles were compared in order to find the best combination of activeperiod and burst frequency that might artificially sustain muscle contraction for the longest time with the lowest knee joint variation.

Methods

Spinal cord injured volunteers (N=10) participated in this study. The frequency of each FES profile was 1 kHz with variable pulse active period (100 μs or 200 μs) and pulse inactive period (900 μs or 800 μs). The setup burst frequencies had either 50 Hz (3 ms active time and 17 ms rest time) or 70 Hz (3 ms active time and 11 ms rest time).

Results

The best results were obtained to FES profiles P2 (burst frequency of 70 Hz and pulse active period of 100 μs), P3 (burst frequency of 50 Hz and pulse active period of 200 μs) and P4 (burst frequency of 70 Hz and pulse active period of 200 μs).

Conclusions

In order to maintain the SCIV’s knee angle with minimal variation, the best results occurred with the application of P2, P3 and P4 FES profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu NY, Chang SH. The characterization of contractile and myoelectric activities in paralyzed tibialis anterior post electrically elicited muscle fatigue. Artif Organs. 2010; 34(4):E117–E121.

    Article  Google Scholar 

  2. Schearer EM, Liao Y-W, Perreault EJ, Tresch MC, Lynch KM, editors. Optimal sampling of recruitment curves for functional electrical stimulation control. Annu Int Conf IEEE Eng Med Biol Soc. 2012; 1–4.

  3. Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol. 2008; 586(1):11–23.

    Article  Google Scholar 

  4. Kernell D, Monster AW. Motoneurone properties and motor fatigue. Exp Brain Res. 1982; 46(2):197–204.

    Google Scholar 

  5. Xia T, Frey Law LA. A theoretical approach for modeling peripheral muscle fatigue and recovery. J Biomech. 2008; 41(14):3046–3052.

    Article  Google Scholar 

  6. Matsunaga T, Shimada Y, Sato K. Muscle fatigue from intermittent stimulation with low and high frequency electrical pulses. Arch Phys Med Rehab. 1999; 80(1):48–53.

    Article  Google Scholar 

  7. Thrasher A, Graham GM, Popovic MR. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters. Artif Organs. 2005; 29(6):453–458.

    Article  Google Scholar 

  8. Hodgkin AL, Huxley AF. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952; 116(4):497–506.

    Google Scholar 

  9. Kernell D, Monster AW. Time course and properties of late adaptation in spinal motoneurones of the cat. Exp Brain Res. 1982; 46(2):191–196.

    Google Scholar 

  10. Fisekovic N, Popovic DB. New controller for functional electrical stimulation systems. Med Eng Phys. 2001; 23(6):391–399.

    Article  Google Scholar 

  11. Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY. Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol. 2002; 92(4):1487–1493.

    Google Scholar 

  12. Krueger-Beck E, Scheeren E, Nogueira-Neto GN, Button VLdSN, Nohama P, editors. Optimal FES parameters based on mechanomyographic efficiency index. Annu Int Conf IEEE Eng Med Biol Soc. 2010; 1378–1381.

  13. Bailey SN, Hardin EC, Kobetic R, Boggs LM, Pinault G, Triolo RJ. Neurotherapeutic and neuroprosthetic effects of implanted functional electrical stimulation for ambulation after incomplete spinal cord injury. J Rehabil Res Dev. 2010; 47(1):7–16.

    Article  Google Scholar 

  14. Baptista RR, Scheeren EM, Macintosh BR, Vaz MA. Lowfrequency fatigue at maximal and submaximal muscle contractions. Brazilian J Med Biol Res. 2009; 42:380–385.

    Article  Google Scholar 

  15. Fujita K, Handa Y, Hoshimiya N, Ichie M. Stimulus adjustment protocol for FES-induced standing in paraplegiausing percutaneous intramuscular electrodes. IEEE T Rehabil Eng. 1995; 3(4):360–366.

    Article  Google Scholar 

  16. Gollee H, Hunt KJ, Wood DE. New results in feedback control of unsupported standing in paraplegia. IEEE T Neural Syst Rehabil Eng. 2004; 12(1):73–80.

    Article  Google Scholar 

  17. Jezernik S, Wassink RGV, Keller T. Sliding mode closed-loop control of FES: controlling the shank movement. IEEE T Biomed Eng. 2004; 51(2):263–272.

    Article  Google Scholar 

  18. Langzam E, Nemirovsky Y, Isakov E, Mizrahi J. Muscle enhancement using closed-loop electrical stimulation: Volitional versus induced torque. J Electromyogr Kines. 2007; 17(3):275–284.

    Article  Google Scholar 

  19. Marsolais EB, Kobetic R. Functional electrical stimulation for walking in paraplegia. J Bone Joint Surg. 1987; 69(5):728–733.

    Google Scholar 

  20. Marsolais EB, Kobetic R. Development of a practical electrical stimulation system for restoring gait in the paralyzed patient. Clin Orthop Relat R. 1988; 233:64–74.

    Google Scholar 

  21. McAndrew DJ, Rosser NAD, Brown JMM. Mechanomyographic measures of muscle contractile properties are influenced by the duration of the stimulatory pulse. J Appl Res. 2006; 6(1):142–152.

    Google Scholar 

  22. Thrasher TA, Flett HM, Popovic MR. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord. 2006; 44(6):357–361.

    Article  Google Scholar 

  23. Petrofsky JS. Electrical stimulation: neurophysiological basis and application. Basic Appl Myol. 2004; 14(4):205–213.

    Google Scholar 

  24. Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Med. 2005; 141(2):171–198.

    Article  Google Scholar 

  25. Krueger-Beck E, Scheeren E, Nogueira-Neto GN, Neves EB, Button VLdSN, Nohama P, editors. Time and angular variations in different neuromuscular electrical stimulation profiles. Twentysecond (XXII) Brazilian Congress of Biomedical Engineering. 2010; 1434–1437.

  26. Zagheni AL. Neuromuscular Electrical Stimulation multichannel system controlled by computer for applications in artificial locomotion [M.Sc thesis]. Curitiba. Federal Technological University of Paraná. 1998.

    Google Scholar 

  27. Bronzino JD. Management of medical technology: a primer for clinical engineers. Boston, USA: Butterworth-Heinemann; 1992.

    Google Scholar 

  28. Rabischong E. Surface action potentials related to torque output in paraplegics’ electrically stimulated quadriceps muscle. Med Eng Phys. 1996; 18(7):538–547.

    Article  Google Scholar 

  29. Ratkevièius A, Skurvydas A, Povilonis E, Quistorff B, Lexell J. Effects of contraction duration on low-frequency fatigue in voluntary and electrically induced exercise of quadriceps muscle in humans. Eur J Appl Physiol O. 1998; 77(5):462–468.

    Article  Google Scholar 

  30. Kesar T, Chou LW, Binder-Macleod SA. Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J Electromyogr Kines. 2008; 18(4):662–671.

    Article  Google Scholar 

  31. Marion MS, Wexler AS, Hull ML. Predicting fatigue during electrically stimulated non-isometric contractions. Muscle Nerve. 2010; 41(6):857–867.

    Article  Google Scholar 

  32. Franken HM, Veltink PH, Fidder M, Boom HBK. Fatigue of intermittently stimulated paralyzed human quadriceps during imposed cyclical lower leg movements. J Electromyogr Kines. 1993; 3(1):3–12.

    Article  Google Scholar 

  33. Talmadge RJ, Castro MJ, Apple DF, Dudley GA. Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol. 2002; 92(1):147.

    Google Scholar 

  34. Ditor DS, Hamilton S, Tarnopolsky MA, Green HJ, Craven BC, Parise G, et al. Na+, K+ ATPase concentration and fiber type distribution after spinal cord injury. Muscle Nerve. 2004; 29(1):38–45.

    Article  Google Scholar 

  35. Gobbo M, Cè E, Diemont B, Esposito F, Orizio C. Torque and surface mechanomyogram parallel reduction during fatiguing stimulation in human muscles. Eur J Appl Physiol O. 2006; 97(1):9–15.

    Article  Google Scholar 

  36. Andersen JL, Gruschy-Knudsen T, Sandri C, Larsson L, Schiaffino S. Bed rest increases the amount of mismatched fibers in human skeletal muscle. J Appl Physiol. 1999; 86(2):455–460.

    Google Scholar 

  37. Burnham R, Martin T, Stein R, Bell G, MacLean I, Steadward R. Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord. 1997; 35(2):86–91.

    Article  Google Scholar 

  38. Chou LW, Ding J, Wexler AS, Binder-Macleod SA. Predicting optimal electrical stimulation for repetitive human muscle activation. J Electromyogr Kines. 2005; 15(3):300–309.

    Article  Google Scholar 

  39. Kaczmarek P, Huber J, Lisiski P, Witkowska A, Kasiski A. Investigation of the relationship between stimulus parameters and a human muscle contraction force during stimulation of the gastrocnemius muscle. Artif Organs. 2009; 34(2):126–135.

    Article  Google Scholar 

  40. Kesar T, Binder-Macleod S. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Exp Physiol. 2006; 91(6):967–976.

    Article  Google Scholar 

  41. Biering-Sorensen B, Kristensen IB, Kjaer M, Biering-Sorensen F. Muscle after spinal cord injury. Muscle Nerve. 2009; 40(4):499–519.

    Article  Google Scholar 

  42. Ward AR, Robertson VJ. Variation in torque production with frequency using medium frequency alternating current* 1,* 2. Arch Phys Med Rehab. 1998; 79(11):1399–1404.

    Article  Google Scholar 

  43. Maynard FM, Bracken MB, Creasey G, Ditunno JF, Donovan WH, Ducker TB, et al. International standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1997; 35(5):266–274.

    Article  Google Scholar 

  44. Cipriano JJ. Photographic manual of regional orthopaedic and neurological tests. 4 ed. Atlanta, Georgia: Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  45. Bohannon RW, Smith M. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys Ther. 1987; 67(2):206–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy Krueger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krueger, E., Scheeren, E.M., Nogueira-Neto, G.N. et al. Analysis of functional electrical stimulation parameters by muscular contraction time and knee joint angular variation. Biomed. Eng. Lett. 3, 1–7 (2013). https://doi.org/10.1007/s13534-013-0082-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-013-0082-2

Keywords

Navigation