Skip to main content
Log in

Surface characteristics and osteoblast cell response on TiN- and TiAlN-coated Ti implant

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the surface characteristics and osteoblast cell response of TiN and TiAlN coated on Ti Surface.

Methods

TiN and TiAlN coatings were applied on Ti dental implant and surface characteristics of these coatings were evaluated. And osteogenic effect of TiN and TiAlN coating on MG63 osteoblast-like cell proliferation and differentiation was evaluated by cell viability assay (MTT assay), ALP activity assay and expressions of collagen gene.

Results

As observed by SEM, both the TiN and TiAlN coatings had thickness of about 1.7 μm. From the EDX analysis, Ti and N peaks and Ti, Al and N peaks are confirmed on the TiN and TiAlN coating surface, respectively. The wetting angles of TiN and TiAlN coatings were increased as compared to that of control Ti. As compared to Ti, a great number of attached cells on TiN and TiAlN coated surfaces were observed. The cell survival rate of the TiN and TiAlN were 125% and 117% as compared to that of the Ti (100%). Both the TiN and TiAlN coatings produced equivalent levels of protein. ALP activity of MG63 cells grown on Ti, TiN and TiAlN surface is indicated. Collagen gene was overexpressed in cells cultured on TiN and TiAlN in comparison with the Ti.

Conclusions

TiN and TiAlN coatings on Ti dental implant may have potential for use in dental implant in terms of their biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Groessner-Schreiber B, Tuan RS. Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J Cell Sci. 1992; 101:209–217.

    Google Scholar 

  2. Ducheyne P, Raemdonck W, Heughebaert JC, Heughebaert M. Structural analysis of hydroxyapatite coating on titanium. Biomaterials. 1986; 7:97–103.

    Article  Google Scholar 

  3. Singh RK, Qien F, Ngaushnam V, Damodaran R, Moudgil BM. Excimer laser deposition of hydroxyapatite thin films. Biomaterials. 1994; 15:522–528.

    Article  Google Scholar 

  4. Ohtsuka Y, Matsuura M, Chida N, Yoshinari M, Sumii T, Derand T. Formation of hydroxyapatite coating on pure titanium substrates by ion beam dynamic mixing. Surf Coat Tech. 1994; 65:224–230.

    Article  Google Scholar 

  5. Ong JL, Lucas LC, Lacefield WR, Rigney ED. Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. Biomaterials. 1992; 13:249–254.

    Article  Google Scholar 

  6. Wolke JGC, van Dijk K, Schaeken HG, De Groot K, Jansen JA. Study of the surface characteristics of magnetron-sputter calcium phosphate coatings. J Biomed Mater Res. 1994; 28:1477–1484.

    Article  Google Scholar 

  7. Hero H, Wie H, Jorgensen RB, Ruyter IE. Hydroxyapatite coatings on Ti produced by hot isostatic pressing. J Biomed Mater Res. 1994; 28:343–348.

    Article  Google Scholar 

  8. Zhitomirsky I, Gal-Or L. Electrophortic deposition of hydroxyapatite. J Mater Sci-Mater M. 1997; 8:213–219.

    Article  Google Scholar 

  9. Weng W, Baptista JL. Sol-gel drived porous hydroxyapatite coatings. J Mater Sci Mater Med 1998; 9:159–163.

    Article  Google Scholar 

  10. Wieser E, Tsyganov I. Matz W, Reuther H, Oswald S, Pham T, Richter E. Modification of titanium by ion implantation of calcium and/or phosphorus. Surf Coat Tech. 1999; 111:103–109.

    Article  Google Scholar 

  11. Kokubo T, Miyaji F, Kim HM, Nakamura T. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc. 1996; 79:1127–1129.

    Article  Google Scholar 

  12. Redepending J, McIsaac JP. Electrocrystallization of rushite coatings on prosthetic alloys. Chem Mater. 1990; 2:625–627.

    Article  Google Scholar 

  13. Hulshoff JE, van Dijk K, de Ruijter JE, Rietveld FJR, Ginsel LA, Jansen JA. Interfacial phenomena: An in vitro study of the effect of calcium phosphate (Ca-P) ceramic on bone formation. J Biomed Mate Res. 1998 40:464–474.

    Article  Google Scholar 

  14. Galante JO, Lemons J, Spector M, Wilson PDJr, Wright TM. The biologic effects of implant materials. J Orthopaed Res. 1991; 9:760–775.

    Article  Google Scholar 

  15. Paschoal AL, Vanancio EC, Canale LdeC, Dasilva OL, Huerta-Vilca D, Motheo AdeJ. Metallic biomaterials TIN-coated: corrision analysis and biocompatibility. Artif Organs. 2003; 27:461–464.

    Article  Google Scholar 

  16. Buhl R, Pulker HK, Moll E. TiN coatings on steel. Thin Solid Films. 1981; 80:265–270.

    Article  Google Scholar 

  17. Chien CC, Liu KT, Duh JG, Chang KW, Chung KH. Effect of nitride film coatings on cell compatibility. Dent Mater. 2008; 24:986–993.

    Article  Google Scholar 

  18. Larsson C, Thomsen P, Lausmaa J, Rodahl M, Kasemo B, Ericson LE. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials. 1994; 15:1062–1074.

    Article  Google Scholar 

  19. Sovak G, Weiss A, Gotman I. Osseointegration of Ti6Al14V alloy implants coated with titanium nitride by a new method. J Bone Joint Surg. 2000; 82B:290–296.

    Article  Google Scholar 

  20. Kapczinski MP, Gil C, Kinast EJ, Santos CA. Surface modification of titanium by plasma nitriding. Mater Res. 2003; 2:265–271.

    Google Scholar 

  21. Rie KT, Stucky T, Silva RA, Leitao E, Bordji K, Jouzeau JY, Mainard D. Plasma surface treatment and PACVD on Ti alloys for surgical implants. Surf Coat Technol. 1995; 74–5:973–980.

    Article  Google Scholar 

  22. Blaha P, Redinger J, Schwarz K. Bonding study of TiC and TiN. II. Theory. Phys Rev. 1985; B31:2316–2325.

    Google Scholar 

  23. Price JB, Borland JO, Selbrede S. Properties of chemical-vapordeposited titanium nitride. Thin Solid Films. 1993; 236:311–318.

    Article  Google Scholar 

  24. Mandl S, Rauschenbach B. Improving the biocompatibility of medical implants with plasma immersion ion implantation. Surf Coat Technol. 2002; 156:276–283.

    Article  Google Scholar 

  25. Bordji K, Jouzeau JY, Mainard D, Payan E, Netter P, Rie KT, Stucky T, Hage-Ali M. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials. 1996; 17:929–940.

    Article  Google Scholar 

  26. Dion I, Rouais F, Trut L, Baquey C, Monties JR, Havlik P. TiN coating: surface characterization and haemocompatibility. Biomaterials. 1993: 14:1230–1235.

    Google Scholar 

  27. Oshida Y, Hashem A. Titanium-porcelain system. Part I: oxidation kinetics of nitrided pure titanium, simulated to porcelain firing process. Biomed Mater. 1993; 3:185–198.

    Google Scholar 

  28. Hock H, Schaffer E, Doll W, Kleer G. Composite coating materials for the moulding of diffractive and refractive optical components of inorganic glasses. Surf Coat Technol. 2003; 163:689–694.

    Article  Google Scholar 

  29. Huang CT, Duh JD. Microhardness of (Ti,Al)N films deposited by reactive R. F. magnetron sputtering. J Mater Sci Lett. 2001; 16:59–61.

    Article  Google Scholar 

  30. Bressan JD, Hesse R, Silva EM. Abrasive wear behavior of high speed steel and hard metal coated with TiAlN and TiCN. Wear. 2001; 250:561–568.

    Article  Google Scholar 

  31. Ahn SH, Yoo JH, Choi YS, Kim JG, Han JG. Corrosion behavior of PVD-grown WC-(Ti1-xAlx)N films in a 3.5% NaCl solution. Surf Coat Technol. 2003; 162:212–221.

    Article  Google Scholar 

  32. McIntyre D, Greene JE, Håkansson G, Sundgren JE, Münz WD. Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms. J Appl Phys. 1990; 67:1542–1553.

    Article  Google Scholar 

  33. Cyster LA, Parker KG, Parke TL, Grant DM. The effect of surface chemistry and nanotopography of titanium nitride films on 3T3-L1 fibroblasts. J Biomed Mater Res. 2003; 67A:138–147.

    Article  Google Scholar 

  34. Birte GS, Anja N, Müller WD, Hopp M, Griepentrog M, Lange KP. Fibroblast growth on surface-modified dental implants: An in vitro study. J Biomed Mater Res. 2003; 64A: 591–599.

    Article  Google Scholar 

  35. Le Gu’ehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007; 23:844–854.

    Article  Google Scholar 

  36. Zhang YM, Bataillon-Linez P, Huang P, Zhao YM, Han Y, Traisnel M, Xu KW, Hidebrand HF. Surface analyses of microarc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J Biomed Mater Res. 2004; 68A:383–391.

    Article  Google Scholar 

  37. Lampin M, Warocquier-clerout R, Legris C, Degrange M, Sigot-Luizard MF. Correlation between subsratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res. 1997; 36:99–108.

    Article  Google Scholar 

  38. Ponsonnet L, Comte V, Othmane A, Lagneau C, Charbonnier M. Effect of surface topography and chemistry on adhesion orientation and growth of fibroblasts on nickel-titanium substrates. Mat Sci Eng C. 2002; 21:157–165.

    Article  Google Scholar 

  39. Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin P, Hildebrand HF, Iost A, Leroy JM. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials. 2000; 21:1567–1577.

    Article  Google Scholar 

  40. Boyan BD, Sylvia VL, Liu Y, Sagun R, Cochran DL, Lohmann H, Dean DD, Schwartz Z. Surface roughness mediates its effects on osteoblasts via protein Kinase A and phopholipase A2. Biomaterials. 1999; 20:2305–2310.

    Article  Google Scholar 

  41. Kawahara H. Cellular responses to implant materials: biological, physical and chemical factors. Int Dent J. 1983; 33:350–375.

    Google Scholar 

  42. Le Guehennec L, Lopez-Heredia M, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behavior on different titanium implant surfaces. Acta Biomaterials. 2008; 4:535–543.

    Article  Google Scholar 

  43. Kim MJ, Choi MU, Kim CW. Activation of phospholipase D1 by surface roughness of titanium in MG 63 osteoblast-like cell. Biomaterials. 2006; 27:5502–5511.

    Article  Google Scholar 

  44. Cooper GM, Hausman RE. The cell: A molecular approach. 3rd ed. Washington: ASM Press; 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Yub Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, H.W., Lee, HJ., Ha, JY. et al. Surface characteristics and osteoblast cell response on TiN- and TiAlN-coated Ti implant. Biomed. Eng. Lett. 1, 99–107 (2011). https://doi.org/10.1007/s13534-011-0015-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-011-0015-x

Keywords

Navigation