Skip to main content
Log in

Potentiation of apoptosis in rat striatum exposed to endosulfan and the role of quercetin

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

This study focuses on evaluation of the toxic effect of enduslfan (END) and the quercetin (QUE) role in rat striatum. END (2 mg/kg) associated or not with QUE (10 mg/kg), was daily administered to animals during 6 days. Then, striatum mitochondria suspension was prepared by centrifugation to assess mitochondria swelling and redox status by determining malondialdehyde (MDA), glutathione-s-transferase (GST), catalase (CAT) and Glutathion (GSH). In addition, striatal lysate was also elaborated to determine apoptosis markers caspases-9 and 8; B-cell lymphoma2 (Bcl2) and Bcl2 associated X (Bax), by applying luminescence and ELISA methods. This study has shown an increase in mitochondria swelling and induction of apoptotic pathway. In addition, a decrease in mitochondrial enzymatic activity of GST and CAT was recorded as well as an increase in mitochondrial MDA rate and a fall in mitochondrial GSH level. By contract, QUE has maintained oxidative stress and apoptotic markers at their homeostasis levels and prevented striatum mitochondria swelling. Thus, endosulfan impairs redox status and membrane integrity of striatum mitochondria and induces apoptosis, but the use of QUE avoids these alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fattach, N. in Les polluants organiques persistants. Thèse de doctorat de l’université de Mohammed V Souissi. (Université of Mohammed V, Rabat, Marocco, 2010).

    Google Scholar 

  2. Lahouel, A. et al. Nurobehavioral deficits and brain oxidative stress induced by chronic low dose exposure of persistent organic pollutants mixture in adult female rat. Environ. Sci. Pollut. Res. 23, 19030–19040 (2016).

    Article  CAS  Google Scholar 

  3. Ruzzin, J. et al. Persistent Organic Pollutant Exposure Leads to Insulin Resistance Syndrome. Environ. Sci. Pollut. Res. 118, 465–471 (2010).

    CAS  Google Scholar 

  4. Lee, S. E. et al. Endosulfan Induced Biomarkers in Japanese Rice Fish (Oryzias latipes) analyzed by SELDI-TOF-MS. Int. J. Biol. Sci. 9, 343–349 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chevallier, A. in Etude du rôle du récepteur aux hydrocarbures aromatiques ou AhR dans le développement et l’homéostasie du système nerveux de la souris C57BL/6J. Human health and pathology (Université Rene Descartes -Paris V publication, France, 2012).

    Google Scholar 

  6. Barnig, C., Kopferschmitt, M. C. & De Blay, F. Syndrome d’hypersensibilité chimique multiple: physiopathologie et clinique Multiple chemical sensitivities: Pathophysiology and clinical aspects. Rev. Fr. Aller. Immunol. Clin. 47, 250–252 (2007).

    Google Scholar 

  7. Rychen, G. et al. La chaîne alimentaire vectrice de polluants organiques persistants. Cah. Nutr. Diet. 41, 139–146 (2006).

    Article  CAS  Google Scholar 

  8. Verner, M. A. in Caractérisation de la variabilité interindividuelle dans la Toxicocinétique des polluants organiques persistants chez L’humain (Université du québec, Montréal, 2012).

    Google Scholar 

  9. UNEP in Global Report 2003-Regionally Based Assessment of Persistent Toxic Substances (UNEP chemicals, Geneva Switzerland, 2003).

  10. UNEP (United Nations Environment Programmme). in Chemicals. Regionally based assessment of persistent toxic substances -Antarctica regional report (UNEP chemicals, Geneva, 2009).

  11. Vandelac, L. & Bacon, M. H. Perturbateurs endocriniens et pollants organiques persistants: inquiétante erosion de la santé, dela fertilité et de la capacité intellectuelle. Ruptures, revue transdisciplinaire en santé 6, 237–267 (1999).

    Google Scholar 

  12. Baldi, I. et al. in Pesticides. Effets sur la sante. Collection expertise collective (Ed. Inserm, Paris, France, 2013).

    Google Scholar 

  13. Moon, J. M. & Chun, B. J. Acute endosulfan poisoning: a retrospective study. Hum. Exp. Toxicol. 28, 309–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Ambolet-Camoit, A. et al. Les pollutants organiques persistants: implication dans l’obésité et le syndrome métabolique. Cah. Nutr. Diet. 47, 183–192 (2012).

    Article  CAS  Google Scholar 

  15. Hossain, M. M. et al. Acute Effects of Pyrethroids on Serotonin Release in the Striatum of Awake Rats: An In Vivo Microdialysis Study. Biochem. Mol. Toxicol. 27, 150–156 (2014).

    Article  Google Scholar 

  16. Lakroun, Z. et al. Oxidative stress and brain mitochondria swelling induced by Endosulfan and protective role of quercetin in rat. Environ. Sci. Pollut. Res. 22, 7776–7781 (2015).

    Article  CAS  Google Scholar 

  17. Mor, F. & Ozmen, O. Effect of vitamin C in reducing the toxicity of endosulfan in liver in rabbits. Exp. Toxicol. Pathol. 62, 75–80 (2010a).

    Article  CAS  PubMed  Google Scholar 

  18. Mor, F. & Ozmen, O. Endosulfan-induced neurotoxicity and serum acetyl cholinesterase inhibition in rabbits: The protective effect of Vit C. Pesticide Biochem. Physiol. 96, 108–112 (2010a).

    Article  CAS  Google Scholar 

  19. Stoytcheva, M. in Pesticide-The Impacts of Pesticide Exposure (Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia, 2011).

    Book  Google Scholar 

  20. Kang, K. S. et al. Effects and neuro-toxic mechanisms of 2,2',4,4',5,5'-hexaclorobiphenyl and en dosulfan in neuronal stem cells. J. Vet. Med. Sci. 63, 1183–1190 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Chan, M. P. L. et al. Development of an in vitro blood-brain barrier model to study the effects of endosulfan on the permeability of tight junctions and a comparative study of the cytotoxic effects of endosulfan on rat and human glial and neuronal cell cultures. Envir. Toxicol. 21, 223–235 (2006).

    Article  CAS  Google Scholar 

  22. Ballesteros, M. L. et al. Endosulfan induces changes in spontaneous swimming activity and acetyl cholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Environ. Pollut. 157, 1573–1580 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Silva, M. H. & Gammon, D. An assessment of the developmental, reproductive and neurotoxicity of endosulfan. Birth Defects Res. Part B Dev. Reprod. Toxicol. 86, 1–28 (2009).

    Article  CAS  Google Scholar 

  24. Sunol, C. et al. Studies with neuronal cells: from basic studies of mechanisms of neurotoxicity to the prediction of chemical toxicity. Toxicol. In Vitro. 22, 1350–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, X., Chang, H. Y. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355–1357 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Froelich, C. J., Dixit, V. M. & Yand, X. Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases. Trends Immuno. 19, 30–36 (1998).

    Article  CAS  Google Scholar 

  27. Ye, L., Chaohua, Y. & Nina, F. S. Apoptosis in the absence of caspase 3. Oncogene 20, 6570–6578 (2001).

    Article  CAS  Google Scholar 

  28. Lafuente, A. & Pereiro, N. Neurotoxic effects induced by endosulfan exposure during pregnancy and lactation in female and male rat striatum. Toxicol. 311, 35–40 (2013).

    Article  CAS  Google Scholar 

  29. Brunelli, E. et al. Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufobufo tadpoles. Aqua. Toxicol. 91, 135–142 (2009).

    Article  CAS  Google Scholar 

  30. Iwanicka, N. B. & Borzecki, A. Sub acute poisoning of mice with Deltaméthrin produces memory impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism of oxidative stress. Pharmacol. Rep. 67, 535–541 (2015).

    Article  Google Scholar 

  31. Jia, Z. & Misra, H. P. Developmental exposure to pesticides zineb and/or endosulfan renders the nigrostriatal dopamine system more susceptible to these environmental chemicals later in life. NeuroToxicol. 28, 727–735 (2007).

    Article  CAS  Google Scholar 

  32. Scremin, O. U. et al. The environmental pollutant endosulfan disrupts cerebral cortical function at low doses. NeuroToxicol. 32, 31–37 (2011).

    Article  CAS  Google Scholar 

  33. Khan, P. K. & Sinha, S. P. Impact of higher doses of vitamin-C in modulating pesticide genotoxicity, Teratogen. Carcinogen. Mutagen. 14, 75–181 (1994).

    Article  Google Scholar 

  34. Muttaka, A., Abdullahi, J. & Sule, M. S. Toxicological Studies of the Aqueous Leaves Extracts of Combretum micranthum on Rats. Int. J. Biochem. Biotechnol. 12, 167–171 (2016).

    Google Scholar 

  35. Clayton, D. A. & Doda, J. N. in Cells: A Laboratory (eds Manual. D. L. Spector, R. Goldman & L. Leinwand) 356–361 (Sci. Pub Press, Beijing, China, 2001).

  36. Farhi, S. et al. The neurotoxicity study of cadmium on oxidative stress parametres and the protective effect of sélénium on this toxicity in rabbitis. J. Trace Elem. Med. Biol. 29, 4–10 (2015).

    Google Scholar 

  37. Bradford, M. A. Rapid and sensitive method for the quantitation of microgram quantities of prtein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  38. Clairborne, A. in Catalase activity In CRC, Handbook of Methods for Oxygen Radical Research (CRC Press, Boca Raton, FL., 1985).

    Google Scholar 

  39. Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Biol. Chem. 249, 7130–7139 (1974).

    CAS  Google Scholar 

  40. Ellman, G. L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  CAS  PubMed  Google Scholar 

  41. Ohkawa, H., Ohishi, N. & Yagi, K. Assay of lipid peroxides in animal tissue by thiobarbituric reaction. Anal. Biochem. 95, 351–358 (1979).

    Article  CAS  PubMed  Google Scholar 

  42. Ahmed, M. B. et al. Neurotoxic effect of lead on rats: relationship to apoptosis. Int. J. Health Sci. 7, 192–199 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kebieche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakroun, Z., Kebieche, M., Lahouel, A. et al. Potentiation of apoptosis in rat striatum exposed to endosulfan and the role of quercetin. Toxicol. Environ. Health Sci. 9, 229–236 (2017). https://doi.org/10.1007/s13530-017-0325-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-017-0325-1

Keywords

Navigation