Skip to main content
Log in

The influence of different aluminium compounds on the hippocampal morphofunctional state and conditioning in mice

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Notwithstanding that there are many researches pursuing in aim to define a neurotoxic behavior of various compounds of aluminium, its role as a potential neurotoxin is debatable to this day. The present study was aimed at comparison of neurotoxic action of aluminium in the forms of chloride and citrate, administered orally in a dose of Al3+=0.1 mg/kg of body weight per day. The results of double T-maze tests that were used for detection of cognitive impairment, and results of histological and micromorphometric examination of hippocampal CA1 neurons are presented. At research findings, we revealed violations of memory and learning processes and also irreversible morphological changes of hippocampal CA1 neurons in aluminium citrate intoxicated mice, that were expressed more than in aluminium chloride intoxicated mice. Furthermore, we caught neuronal atrophy in hippocampal CA1 area of both mice groups, and it was more pronounced in aluminium citrate intoxicated group. Basing of conducted study, it could be concluded that different aluminium compounds in a real taking dose have a neurotoxic action that influence both morphofunctional integrality of hippocampus and cognitive function of CNS, more expressing on exposure to aluminium citrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkinson, I. S., Ward, M. K. & Kerr, D. N. Dialysis encephalopathy, bone disease and anaemia: The aluminum intoxication syndrome during regular haemodialysis. J. Clin. Pathol. 34, 1285–1294 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Malluche, H. H. Aluminium and bone disease in chronic renal failure. Nephrol. Dial. Transplant. 17, 21–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Garruto, R. M. et al. Imaging of calcium and aluminum in neurofibrillary tangle-bearing neurons in parkinsonism-dementia of Guam. Proc. Natl. Acad. Sci. 81, 1875–1879 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garruto, R. M. et al. Low-calcium, high-aluminum diet-induced motor neuron pathology in cynomolgus monkeys. Acta. Neuropathol. Berl. 78, 210–219 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Flaten, T. P. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res. Bull. 55, 187–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Ferreira, P. C., Piai Kde, A., Takayanagui, A. M. & Segura-Muñoz, S. I. Aluminum as a risk factor for Alzheimer’s disease. Rev. Lat. Am. Enfermagem. 16, 151–157 (2008).

    Article  PubMed  Google Scholar 

  7. Walton, J. R. Cognitive deterioration and associated pathology induced by chronic low-level aluminum ingestion in a translational rat model provides an explanation of Alzheimer’s disease, tests for susceptibility and avenues for treatment. Int. J. Alzheimers Dis. doi: 10.1155/2012/914947 (2012).

    Google Scholar 

  8. Thenmozhi, A. J., Raja, W. T. R., Manivasagam, T., Janakiraman, U. & Essa, M. M. Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr. Neurosci. 20, 360–368 (2017).

    Article  Google Scholar 

  9. Wang, P. & Wang, Z. Y. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res. Rev. 35, 265–290 (2017).

    Article  PubMed  Google Scholar 

  10. Lindblad, E. B. Aluminium adjuvants -in retrospect and prospect. Vaccine 22, 3658–3668 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Priest, N. D. et al. The bioavailability of 26 Al-labelled aluminium citrate and aluminium hydroxide in volunteers. Biometals 9, 221–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Wink, M. in The Plant Vacuole (eds Leigh, R. A. & Sanders, D.) 141–170 (Academic Press, London, UK,1997).

  13. Gao, H. J., Zhao, Q., Zhang, X. C., Wan, X. C. & Mao, J. D. Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots. J. Agric. Food Chem. 62, 2313–2319 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Toxicological profile for aluminium, www.atsdr.cdc.gov/toxprofiles/tp22.pdf (2008).

  15. Saiyed, S. M. & Yokel, R. A. Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Addit. Contam. 22, 234–244 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Gupta, A. Ferric citrate hydrate as a phosphate binder and risk of aluminum toxicity. Pharmaceuticals 7, 990–998 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aremu, D., Meshitsuka, S. & Nose, T. A risk of Alzheimer’s disease and aluminum in drinking water. Psychogeriatrics 2, 263–268 (2002).

    Article  Google Scholar 

  18. Chin-Chan, M., Navarro-Yepes, J. & Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci. doi:10.3389/fncel.2015.00124 (2015).

    Google Scholar 

  19. Gorsky, J. E., Dietz, A. A., Spencer, H. & Osis, D. Metabolic balance of aluminum studied in six men. Clin. Chem. 25, 1739–1743 (1979).

    CAS  PubMed  Google Scholar 

  20. Tulakina, N. V., Novikov, J. V., Plitman, S. I. & Jaroshev, V. V. Aluminium in drinking water and public health. Gig Sanit 11, 12–14 (1991).

    Google Scholar 

  21. Shah, S. A., Ullah, F. & Yoon, G. H. Nanoscale-alumina induces oxidative streßs and accelerates amyloid beta (Aß) production in ICR female mice. Nanoscale 7, 15225–15237 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Kawahara, M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J. Alzheimers Dis. 8, 171–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Platt, B., Fiddler, G., Riedel, G. & Henderson, Z. Aluminium toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res. Bull. 55, 257–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Markesbery, W. R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med. 23, 134–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Gupta, G. et al. Pharmacological evaluation of the recuperative effect of morusin against aluminum trichloride (AlCl3)-induced memory impairment in rats. Cent. Nerv. Syst. Agents Med. Chem. doi:10.2174/1871524917666161111095335 (2016).

    Google Scholar 

  26. Sahin, G. et al. The effect of aluminium loading on bones of mice. Arch. Toxicol. Suppl. 14, 88–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Song, M., Huo, H., Cao, Z., Han, Y. & Gao, L. Aluminum trichloride inhibits the rat osteoblasts mineralization in vitro. Biol. Trace Elem. Res. 175, 186–193 (2016).

    Article  PubMed  Google Scholar 

  28. Roos, P. M. Osteoporosis in neurodegeneration. J. Trace Elem. Med. Biol. 28, 418–421 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Maya, S., Prakash, T., Madhu, K. D. & Goli, D. Multifaceted effects of aluminium in neurodegenerative diseases: A review. Biomed. Pharmacother. 83, 746–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Nam, S. M. et al. Reduction of adult hippocampal neurogenesis is amplified by aluminum exposure in a model of type 2 diabetes. J. Vet. Sci. 17, 13–20 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bancroft, J. D. & Gamble, M. in Theory and practice of histological techniques 5th Edn (Churchill Livingstone, London, UK,2002).

    Google Scholar 

  32. Arnich, N., Cunat, L., Lanhers, M. C. & Burnel, D. Comparative in situ study of the intestinal absorption of aluminum, manganese, nickel, and lead in rats. Biol. Trace Elem. Res. 99, 157–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Domingo, J. L. et al. Age related effects of aluminum ingestion on brain aluminum accumulation and behavior in rats. Life Sci. 58, 1387–1395 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Slanina, P., Falkeborn, Y., Frech, W. & Cedergren, A. Aluminium concentrations in the brain and bone of rats fed citric acid, aluminium citrate or aluminium hydroxide. Food Chem. Toxicol. 22, 391–397 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Krasovskii, G. N., Vasukovich, L. Y. & Chariev, O. G. Experimental study of biological effects of leads and aluminium following oral administration. Environ. Health Perspect. 30, 47–51 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Areshidze, D. A. et al. Morphofunctional condition of bones and hippocampus of white rats at experimental intoxication with aluminium chloride. Res. J. Pharm. Biol. Chem. Sci. 8, 1411–1417 (2017).

    Google Scholar 

  37. Golub, M. S. & Germann, S. L. Long-term consequences of developmental exposureto aluminum in a suboptimal diet for growth and behavior of Swiss Webster mice. Neurotoxicol. Teratol. 23, 365–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Verstraeten, S. V., Aimo, L. & Oteiza, P. I. Aluminium and lead: molecular mechanisms of brain toxicity. Arch. Toxicol. 82, 789–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Pohl, H. R., Roney, N. & Abadin, H. G. Metal ions affecting the neurological system. Met. Ions Life Sci. 8, 247–262 (2011).

    CAS  PubMed  Google Scholar 

  40. Ribes, D., Colomina, M. T., Vicens, P. & Domingo, J. L. Effects of oral aluminum exposure on behavior and neurogenesis in a transgenic mouse model of Alzheimer’s disease. Exp. Neurol. 214, 293–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Miu, A. C., Andreescu, C. E., Vasiu, R. & Olteanu, A. I. A behavioral and histological study of the effects of long-term exposure of adult rats to aluminum. Int. J. Neurosci. 113, 1197–1211 (2003).

    Article  PubMed  Google Scholar 

  42. IPCS INCHEM: Aluminium, http://www.inchem.org/documents/jecfa/jecmono/v024je07.htm (2017).

  43. Frolkis, V. V. & Bezrukov, V. V. Aging of the central nervous system. Interdiscipl. Top. Gerontol. Geriatr. 16, 2–15 (1979).

    Article  Google Scholar 

  44. Sher, G. I. in Handbook of Neuroevolution Through Erlang (Springer Science+Business Media, New York, USA, 2013).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iaroslavna A. Kuznetsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, I.A., Areshidze, D.A. & Kozlova, M.A. The influence of different aluminium compounds on the hippocampal morphofunctional state and conditioning in mice. Toxicol. Environ. Health Sci. 9, 215–221 (2017). https://doi.org/10.1007/s13530-017-0323-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-017-0323-3

Keywords

Navigation