Skip to main content
Log in

Inhibitory effects of biocides on hatching and acetylcholinesterase activity in the brine shrimp Artemia salina

  • Research article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Acetlycholinesterase (AChE, EC3.1.1.7) is an important serine esterase that catalyzes the hydrolysis of acetylcholine in the cholinergic system. Using the brine shrimp Artemia salina, we estimated the effects of four biocides (carbofuran, chlorpyrifos, dimethoate, and endosulfan) on nauplii mortality and AChE activity. Lethal concentration 50 (LC50) was calculated for 24, 48, and 72 h in order to select a relevant value for the suite of AChE assays. The LC50s of the four biocides to A. salina ranged from 2 to 8 mg/L for 24 h, 0.9 to 2.5 mg/L for 48 h, and 0.1 to 0.9 mg/L for 72 h, respectively. Selected doses within the LC50 value of each biocide significantly inhibited AChE activity for 24 h. In addition, these concentrations reduced dose-dependently hatching rate of A. salina cysts. This result suggested that both cysts and nauplii have sensitivities to environmental biocides-triggered toxicity. Also, AChE approach with A. salina nauplii revealed that biocides may have a toxic cholinergic effect on Artemia by inhibiting AChE activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tilman, D. et al. Forecasting agriculturally driven glo-bal environmental change. Science 292, 281–284 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. USA 110, 11039–11043 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Mileson, B. E. et al. Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol. Sci. 41, 8–20 (1998).

    PubMed  CAS  Google Scholar 

  4. Pope, C. N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J. Toxicol. Environ. Health B Crit. Rev. 2, 161–181 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. Stark, J. D. & Banks, J. E. Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 48, 505–519 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. Zinkl, J. G., Lockhart, W. L., Kenny, S. A. & Ward, F. J. in The effects of cholinesterase inhibiting insecticides on fish (eds Mineau, P) 233–254 (Elsevier, Amsterdam, Netherlands, 1991).

  7. Braun, G. & Mulloney, B. Acetylcholinesterase activity in neurons of crayfish abdominal ganglia. J. Comp. Neurol. 350, 272–280 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. Koelle, G. B. Pharmacology of organophosphates. J. Appl. Toxicol. 14, 105–109 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. Sancho, E., Ceron, J. J. & Ferrando, M. D. Cholines-terase activity and hematological parameters as bio-markers of sublethal molinate exposure in Anguilla anguilla. Ecotoxicol. Environ. Saf. 46, 81–86 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. Forget, J., Livet, S. & Leboulenger, F. Partial purifica-tion and characterization of acetylchloinesterase (AChE) from the estuarine copepod Eurytemora affinis (Poppe). Comp. Biochem. Physiol. C. 132, 85–92 (2002).

    Google Scholar 

  11. Jin-Clark, Y., Anderson, T. D. & Zhu, K. Y. Effect of alachlor and metolachlor on toxicity of chlorpyrifos and major detoxification enzymes in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Arch. Environ. Contam. Toxicol. 54, 645–652 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. Anguiano, G. A. et al. Effects of exposure to oxamyl, carbofuran, dichlorvos, and lindane on acetylcholines-terase activity in the gills of the pacific oyster (Crassostrea gigas). Environ. Toxicol. 25, 327–332 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Fulton, M. H. & Key, P. B. Acetylcholinesterase inhi-bition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ. Toxicol. Chem. 20, 37–45 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. Varó, I. et al. Acute lethal toxicity of the organophos-phorus pesticide chlorpyrifos to different species and strains of Artemia. Bull. Environ. Contam. Toxicol. 61, 778–785 (1998).

    Article  PubMed  Google Scholar 

  15. Barahona, M. V. & Sanchez-Forun, S. Toxicity of carba-mates to the brine shrimp Artemia salina and the effects of atropine, BW 284c51, iso-OMPA and 2-PAM on carbaryl toxicity. Environ. Pollut. 104, 469–476 (1999).

    Article  CAS  Google Scholar 

  16. Venkateswara Rao, J. et al. Toxicity of organophos-phates on morphology and locomotor behavior in brine shrimp, Artemia salina. Arch. Environ. Contam. Toxicol. 53, 227–232 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Nunes, B. S., Carvalho, F. D., Guilhermino, L. M. & Van Stappen, G. Use of the genus Artemia in ecotoxicity testing. Environ. Pollut. 144, 453–462 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. Varó, I. et al. Assessment of the efficacy of Artemia sp (Crustacea) cysts chorion as barrier to chlorpyrifos (organophosphorus pesticide) exposure. Effect on hatching and survival. Sci. Total. Environ. 366, 148–153 (2006).

    Article  PubMed  Google Scholar 

  19. Banks, K. E., Hunter, D. H. & Wachal, D. J. Chlorpyrifos in surface waters before and after a federally mandated ban. Environ. Int. 31, 351–356 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Varó, I., Navarro, J. C., Amat, F. & Guilhermino, L. Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemosphere 48, 563–569 (2002).

    Article  PubMed  Google Scholar 

  21. Fukuto, T. R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 87, 245–254 (1990).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Boonthai, C., Scott, R. R. & Chapman, R. B. Acetyl-cholinesterase as a biomarker to assess the effect of chlorpyrifos and atrazine on some New Zealand aquatic invertebrates. Australas. J. Ecotoxicol. 6, 59–64 (2000).

    CAS  Google Scholar 

  23. Cooper, N. L. & Bidwell, J. R. Cholinesterase inhibition and impacts on behavior of the Asian clam, Corbicula fluminea, after exposure to an organophosphate insecticide. Aquat. Toxicol. 76, 258–267 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Jemec, A. et al. The applicability of acetylcholinester-ase and glutathione S-transferase in Daphnia magna toxicity test. Comp. Biochem. Physiol. C 144, 303–309 (2007).

    Google Scholar 

  25. Anquiano, G. A. et al. Effects of exposure to oxamyl, carbofuran, dichlorvos, and lindane on acetylcholines-terase activity in the gills of the Pacific oyster Crassostrea gigas. Environ. Toxicol. 25, 327–332 (2009).

    Article  Google Scholar 

  26. Xuereb, B., Lefèvre, E., Garric, J. & Geffard, O. Acetyl-cholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): linking AChE inhibition and behavioural alteration. Aquat. Toxicol. 94, 114–122 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. Amanullah, B., Stalin, A., Prabu, P. & Dhanapal, S. Analysis of AChE and LDH in mollusk Lamellidens marginalis after exposure to chlorpyrifos. J. Environ. Biol. 31, 417–419 (2010).

    PubMed  CAS  Google Scholar 

  28. Kopecka-Pilarczyk, J. The effect of pesticides and metals on acetylcholinesterase (AChE) in various tissues of blue mussel (Mytilus trossulus L.) in short-term in vivo exposures at different temperatures. J. Environ. Sci. Health B 45, 336–346 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Rhee, J.-S. et al. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus. Comp. Biochem. Physiol. C 158, 216–224 (2013).

    CAS  Google Scholar 

  30. Lee, J.-W. et al. Inhibitory effects of biocides on transcription and protein activity of acetylcholinesterase in the intertidal copepod Tigriopus japonicus. Comp. Biochem. Physiol. C 167, 147–156 (2015).

    CAS  Google Scholar 

  31. Pineda, M. C. et al. Tough adults, frail babies: an anal-ysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS One 7, e46672 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. OECD. Organization for Economic Co-operation and Development (OECD).Guideline for the Testing of Chemicals (2004).

  33. Ellman, G. L., Courtney, K. D., Andres, V. Jr. & Feather-stone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).

    CAS  Google Scholar 

  34. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Sung Rhee.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, I., Choi, HJ. & Rhee, JS. Inhibitory effects of biocides on hatching and acetylcholinesterase activity in the brine shrimp Artemia salina . Toxicol. Environ. Health Sci. 7, 303–308 (2015). https://doi.org/10.1007/s13530-015-0253-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-015-0253-x

Keywords

Navigation