Skip to main content
Log in

Gene expression profiles of human lung epithelial cells exposed to toluene

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Allergic inflammatory diseases, such as asthma and allergic rhinitis, are caused by a complex interaction between genetic and environmental factors. Although several relevant candidate genes that are associated with environmental pollutants and allergic diseases have been identified in previous studies, the mechanisms underlying the induction of cytokines and chemokines by environmental pollutants and their role in human diseases are still unclear. This study examines the correlation between exposure to toluene, which is a common environmental pollutant, and the expression of immune-related genes, using reverse transcription-polymerase chain reaction (RT-PCR) with pathway-targeted arrays (RT2 Profiler™ PCR Arrays). Our PCR array analyses suggested the p38 MAPK and JNK pathways are activated upon toluene treatment in BEAS-2B cells, based on the expression profiles of MAPK8 (JNK1), MAPK9 (JNK2), MAPK10 (JNK3), MAPK11 (P38BETA2), CCL5 (RAN TES), CCL11 (eotaxin), and genes encoding proinflammatory cytokines, including tumor necrosis factor (TNF), TOLLIP, IL1A, and IL1B. This study aims to show that toluene exposure induces the expression of RANTES and eotaxin in cultured human bronchial epithelial cell lines through two distinct MAPKs, p38 and JNK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herbarth, O. et al. Effect of indoor chemical exposure on the development of allergies in newborns-LARS study. Proc. Healthy Build. 1, 281–286 (2000).

    Google Scholar 

  2. Becher, R. et al. Environmental chemicals relevant from respiratory hypersensitivity: the indoor environment. Toxicol. Lett. 86, 155–162 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. Brugge, D. et al. Comparison of multiple environmental factors for asthmatic children in public housing. Indoor Air. 13, 18–27 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Fiedler, N. et al. Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress. Environ. Health Perspect. 113, 1542–1548 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. Samet, J. M. et al. Respiratory effects of indoor air pollution. J. Allergy Clin. Immunol. 79, 685–700 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. Koren, H. S. & Devlin, R. B. Human upper respiratory tract responses to inhaled pollutants with emphasis on nasal lavage. Ann. NY Acad. Sci. 641, 215–224 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. Bono, R. et al. Ambient air levels and occupational exposure to benzene, toluene, and xylenes in northwestern Italy. J. Toxicol. Environ. Health A. 66, 519–531 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Wieslander, G. et al. Airway symptoms among house painters in relation to exposure to volatile organic compounds (VOCS)-a longitudinal study. Ann. Occup. Hyg. 41, 155–166 (1997a).

    PubMed  CAS  Google Scholar 

  9. Wieslander, G. et al. Asthma and the indoor environment: the significance of emission of formaldehyde and volatile organic compounds from newly painted indoor surfaces. Int. Arch. Occup. Environ. Health. 69, 115–124 (1997b).

    Article  PubMed  CAS  Google Scholar 

  10. Richter, M. et al. Redecoration of apartments promotes obstructive bronchitis in atopy risk infants-results of the LARS-study. Int. J. Hyg. Environ. Health. 206, 173–179 (2003).

    Article  PubMed  Google Scholar 

  11. Herbarth, O. et al. Effect of indoor chemical exposure on the development of allergies in newborns-LARS study. Proc. Healthy Build. 1, 281–286 (2000a).

    Google Scholar 

  12. Devalia, J. L. et al. Effect of nitrogen dioxide on synthesis of inflammatory cytokines expressed by human bronchial epithelial cells in vitro. Am. J. Respir. Cel. Mol. Biol. 9, 271–279 (1993).

    CAS  Google Scholar 

  13. Noah, T. L. et al. The response of a human bronchial epithelial cell line to histamine: intracellular calcium changes and extracellular release of inflammatory mediators. Am. J. Respir. Cell. Mol. Biol. 5, 484–492 (1991).

    PubMed  CAS  Google Scholar 

  14. Alam, R. Updates on cells and cytokines: chemokines in allergic inflammation. J. Allergy Clin. Immunol. 99, 273–277 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Marini, M. et al. Interleukin-1 binds to specific receptors on human bronchial epithelial cells and upregulates granulocyte/macrophage colony-stimulating factor synthesis and release. Am. J. Respir. Cell. Mol. Biol. 4, 519–524 (1991).

    PubMed  CAS  Google Scholar 

  16. Mattoli, S. et al. Bronchial epithelial cells exposed to isocyanates potentiate activation and proliferation of T-cells. Am. J. Physiol. 259, L320–327 (1990).

    PubMed  CAS  Google Scholar 

  17. Braunstahl, G. J. et al. Segmental bronchial provocation induces nasal infl ammation in allergic rhinitis patients. Am. J. Respir. Crit. Care Med. 161, 2051–2057 (2000).

    PubMed  CAS  Google Scholar 

  18. Schall, T. J. et al. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347, 669–671 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. Stellato, C. et al. Expression of the C-C Chemokine receptor CCR3 in human airway epithelial cells. J. Immunol. 166, 1457–1461 (2001).

    PubMed  CAS  Google Scholar 

  20. Aaron, S. D. et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 163, 349–355 (2001).

    PubMed  CAS  Google Scholar 

  21. Soler, N. et al. Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. Eur. Respir. J. 14, 1015–1022 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. Shruti, J. et al. A computational model for cell survival/death using VHDL and MATLAB simulator. Dig. J. Nanomater. Bios. 4, 863–879 (2009).

    Google Scholar 

  23. Teran, L. M. et al. Leukocyte recruitment after local endobronchial allergen challenge in asthma. Relationship to procedure and to airway interleukin-8 release. Am. J. Respir. Crit. Care Med. 154, 469–476 (1996).

    PubMed  CAS  Google Scholar 

  24. Montefort, S. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J. Clin. Invest. 93, 1411–1421 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. Frew, A. J. et al. Cellular and mediator responses twenty-four hours after local endobronchial allergen challenge of asthmatic airways. J. Allergy Clin. Immunol. 98, 133–143 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. Han, J. et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. Waskiewicz, A. J. & Cooper, J. A. Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr. Opin. Cel. Biol. 7, 798–805 (1995).

    Article  CAS  Google Scholar 

  28. Raingeaud, J. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420–7426 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. Hashimoto, S. et al. Hyperosmolarity-induced IL-8 expression in human bronchial epithelial cells through p38 MAP kinase. Am. J. Respir. Crit. Care Med. 159, 634–640 (1999).

    PubMed  CAS  Google Scholar 

  30. Kyriakis, J. M. & Avruch, J. Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 18, 567–577 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. Xia, Z. et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. Marais, R. & Marshall, C. J. Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surv. 27, 101–125 (1996).

    PubMed  CAS  Google Scholar 

  33. Keren, A., Tamir, Y. & Bengal, E. The p38 MAPK signaling pathway: A major regulator of skeletal muscle development. Mol. Cell Endocrinol. 27, 224–230 (2006).

    Article  Google Scholar 

  34. Schiller, M. et al. Mitogen- and stress-activated protein kinase 1 is critical for interleukin-1-induced, CREB-mediated, c-fos gene expression in keratinocytes. Oncogene 27, 4449–4457 (2006).

    Article  Google Scholar 

  35. Bahia, M. S. & Silakari, O. Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders. Chem. Biol. Drug. Des. 75, 415–443 (2010).

    Article  PubMed  CAS  Google Scholar 

  36. Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. Concetta, C., Maria, G. & Salvatore, C. Effects of genetic and pharmacological inhibition of TNF-α in the regulation of inflammation in macrophages. Pharmacological Research 60, 332–340 (2009).

    Article  Google Scholar 

  38. Eyers, P. A. et al. Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem. Biol. 5, 321–328 (1998).

    Article  PubMed  CAS  Google Scholar 

  39. Dudley, D. T. et al. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. 92, 7686–7689 (1995).

    Article  PubMed  CAS  Google Scholar 

  40. Himes, S. R. et al. The JNK are important for development and survival of macrophages. J. Immunol. 176, 2219–2228 (2006).

    PubMed  CAS  Google Scholar 

  41. Yang, Q. et al. Tumour necrosis factor receptor 1 mediates endoplasmic reticulum stress-induced activation of the MAP kinase JNK. EMBO Rep. 7, 622–627 (2006).

    PubMed  CAS  Google Scholar 

  42. Hashimoto, S. et al. p38 MAP kinase regulates TNF-α, IL-1- and PAF-induced RANTES and GM-CSF production by human bronchial epithelial cells. Clin. Exp. Allergy 30, 48–55 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. Rahman, M. S. et al. IL-17A induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: role of MAPK (Erk1/2, JNK, and p38) pathways. J. Immunol. 177, 4064–4071 (2006).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meyoung-Kon Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YR., Kim, IK., Lee, S.H. et al. Gene expression profiles of human lung epithelial cells exposed to toluene. Toxicol. Environ. Health Sci. 4, 269–276 (2012). https://doi.org/10.1007/s13530-012-0146-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-012-0146-1

Keywords

Navigation