Skip to main content
Log in

Gene expression analysis identifies DNA damage-related markers of benzo[a]pyrene exposure in HepG2 human hepatocytes

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) that is carcinogenic to humans. Although the environmental distribution and metabolism of BaP have been reported and many researchers are performing risk-assessment and toxicological studies of BaP by means of physical and chemical measurements, only a few studies have examined the expression of mRNAs and their functions in BaP-induced toxicity. Toxicogenomic technology, a new paradigm in toxicity screening, is a useful approach for evaluating the toxic properties of environmental pollutants. We analyzed gene expression profiles using human oligonucleotide chips and identified genes in human hepatocellular carcinoma (HepG2) cells whose expression changed > 1.5-fold after exposure to BaP. The expression of 4,048 and 3,926 genes was up-and down-regulated > 1.5-fold (P < 0.01), respectively, after exposure. Gene ontology (GO) analysis of these genes revealed significant enrichment in several key biological processes related to DNA damage, including DNA repair, cell cycle arrest, and apoptosis. We also performed a contrastive study of cellular effects in HepG2 cells exposed to BaP, and identified increased expression of related genes, cell cycle arrest, and apoptotic cells. These results suggest that genetic markers of BaP-induced toxicity may be molecular blueprints that can be more widely implemented in combination with more traditional techniques for assessment and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavery, P. in International Flame Research Foundation (IFRF) online combustion handbook. (University of Glanmorgan, Pontypridd, 2002).

    Google Scholar 

  2. Habe, H. & Omori, T. Genetics of polycyclic atomatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Bioche. 67, 225–243 (2003).

    Article  CAS  Google Scholar 

  3. Pashin, Y. V., & Bakhitova, L. M. Mutagenic and carcinogenic properties of polycyclic aromatic hydrocarbons. Environ. Health Perspect. 30, 185–189 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. Yan, C. et al. Benzo[a]pyrene treatment leads to changes in nuclear protein expression and alternative splicing. Mutat. Res. 686, 47–56 (2010).

    Article  PubMed  CAS  Google Scholar 

  5. Shen, W., Iiu, H. & Yu, Y. Translation initiation proteins, ubiquitin-proteasome system related proteins, and 14-3-3 proteins as response proteins in FL cells exposed to anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide. Proteomics 8, 3450–3468 (2008).

    Article  PubMed  CAS  Google Scholar 

  6. Huang, H. Y. et al. Role of poly(ADP-ribose) glycohydrolase in the regulation of cell fate in response to benzo(a)pyrene. Exp. Cel. Res. 318, 682–690 (2012).

    Article  CAS  Google Scholar 

  7. Ramesh, A. et al. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int. J. Toxicol. 23, 301–333 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Seidel, A. et al. Detoxification of optically active bayand fjord-region polycyclic aromatic hydrocarbon dihydrodiol epoxides by human glutathione transferase P 1-1 expressed in Chinese hamster V79 cells. Carcinogenesis 19, 1975–1981 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. Song, M. K. et al. Formation of a 3,4-diol-1,2-epoxide metabolite of benz[a]anthracene with cytotoxicity and genotoxicity in a human in vitro hepatocyte culture system. Environ. Toxicol. Pharmacol. 33, 212–225 (2012).

    Article  PubMed  CAS  Google Scholar 

  10. Whalen, D. L. et al. Stereoelectronic factors in the solvolysis of bay region diol epoxides of polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 100, 5218–5221 (1978).

    Article  CAS  Google Scholar 

  11. Volk, D. E. et al. Solution structure of a cis-opened (10R)-N6-deoxyadenosine adduct of (9S,10R)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in a DNA duplex. Biochemistry 42, 1410–1420 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Kushida, T., Takagi, T. & Fukuda, K. I. Event ontology: a pathway-centric ontology for biological processes. Pac. Symp. Biocomput. 11, 152–163 (2006).

    Article  Google Scholar 

  13. te Pas, M. F. et al. Biochemical pathways analysis of microarray results: regulation of myogenesis in pigs. BMC Dev. Biol. 7, 66–80 (2007).

    Article  Google Scholar 

  14. Mossman, B. T., Lounsbury, K. M. & Reddy, S. P. Oxidants and signaling by mitogen-activated protein kinases in lung epithelium. Am. J. Respir. Cell. Mol. Biol. 34, 666–669 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Park, H. J. et al. Identification of Gene-based potential biomarkers for cephalexin-induced nephrotoxicity in mice. Mol. Cell. Toxicol. 2, 193–201 (2006).

    Google Scholar 

  16. Choi, H. S., Song, M., Song, M. K., Kim, Y. J. & Ryu, J. C. Analysis of differentially expressed genes by mirex ‘persistent organic pollutant’ in HepG2 cells. Toxcol. Environ. Health. Sci. 3, 245–253 (2011).

    Article  Google Scholar 

  17. Song, M., Kim, Y. J. & Ryu, J. C. Identification of genes induced by benzophenone-2 in human thyroid follicular FTC-238 cells. Mol. Cell. Toxicol. 7, 103–111 (2011).

    Article  CAS  Google Scholar 

  18. Hirano, M., Tanaka, S. & Asami, O. Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray. Chemosphere 66, 1243–1248 (2007).

    Article  Google Scholar 

  19. IARC. in Monographs on the evaluation of carcinogenic risks to humans. Vol 92. (World health organization. Lyon. 2010).

    Google Scholar 

  20. Kim, Y. S. et al. Gene expression analysis and classification of mode of toxicity of polycyclic aromatic hydrocarbons (PAHs) in Escherichia coli. Chemosphere 66, 1243–1248 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. Spink, D. C. et al. Induction of CYP1A1 and CYP1B1 in T-47D human breast cancer cells by benzo[a]pyrene is diminished by arsenite. Drug Metab. Dispos. 30, 262–269 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. Wani, M. A., Zhu, Q., El-Mahdy, M., Venkatachalam, S. & Wani, A. A. Enhanced sensitivity to antibenzo( a)pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells. Cancer Res. 60, 2273–2280 (2000).

    PubMed  CAS  Google Scholar 

  23. Huen, M. S. & Chen, J. The DNA damage response pathways: at the crossroad of protein modifications. Cell. Res. 18, 8–16 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. Jeffy, B. D., Chirnomas, R. B., Chen, E. J., Gudas, J. M. & Romagnolo, D. F. Activation of the aromatic hydrocarbon receptor pathway is not sufficient for transcriptional repression of BRCA-1: requirements for metabolism of benzo[a]pyrene to 7r,8t-dihydroxy-9t,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Cancer Res. 62, 113–121 (2002).

    PubMed  CAS  Google Scholar 

  25. Kwon, Y. W., Ueda, S., Ueno, M., Yodoi, J. & Masutani, H. Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of p53 phosphorylation and p38 MAPK. J. Biol. Chem. 277, 1837–1844 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. Yam, C. H., Fung, T. K. & Poon, R. Y. C. Cyclin A in cell cycle control and cancer. Cell. Mol. Life Sci. 59, 1317–1326 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. Uhlmann, F., Bouchoux, C. & López-Avilés, S. A quantitative model for cyclin-dependent kinase control of the cell cycle: revisited. Phil. Trans. R. Soc. B 366, 3572–3583 (2011).

    Article  PubMed  CAS  Google Scholar 

  28. Guo, N., Faller, D. V. & Vaziri, C. A novel DNA damage checkpoint involving post-transcriptional regulation of cyclin A expression. J. Biol. Chem. 275, 1715–1722 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. Park, S. Y. et al. Benzo[a]pyrene-induced DNA damage and p53 modulation in human hepatoma HepG2 cells for the identification of potential biomarkers for PAH monitoring and risk assessment. Toxicol. Lett. 167, 27–33 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. Vogler, M. BCL2A1: the underdog in the BCL2 family. Cell. Death. Differ. 19, 67–74 (2012).

    Article  PubMed  CAS  Google Scholar 

  31. Boatright, K. M. & Salvesen, G. S. Mechanisms of caspase activation. Curr. Opin. Cell. Biol. 15, 725–731 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. Qamar, W. et al. Alleviation of lung injury by glycyrrhizic acid in benzo(a)pyrene exposed rats: Probable role of soluble epoxide hydrolase and thioredoxin reductase. Toxicology 291, 25–31 (2012).

    Article  PubMed  CAS  Google Scholar 

  33. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chun Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, MK., Yoon, JS., Song, M. et al. Gene expression analysis identifies DNA damage-related markers of benzo[a]pyrene exposure in HepG2 human hepatocytes. Toxicol. Environ. Health Sci. 4, 19–29 (2012). https://doi.org/10.1007/s13530-012-0118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-012-0118-5

Keywords

Navigation