Skip to main content
Log in

Long-term cytotoxicity potential of anionic nanoclays in human cells

  • Brief Communication
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

A great deal of attention has been focused on anionic nanoclays for industrial applications such as catalyst, filters, additives, plastics, and pharmaceutics due to their high adsorption ability, large surface area, and high ion exchange capacity. However, their potential toxicological effects on human health were not yet completely determined, especially by employing several cytotoxicity assays in cell lines. In this study, we prepared two different forms of anionic nanoclays, carbonate and chloride forms, and evaluated their cytotoxicity in terms of cell proliferation and viability in short- and long-term, respectively. The results demonstrated that both different forms of anionic nanoclays did not acutely affect cell proliferation and viability of human lung cells after 72 h. However, the cytotoxicity of the present nanoparticles differed with the testing method used in short-term, underlining the importance of appropriate cytotoxicity assay employed. In long-term, both nanoparticles at high concentration (250–500 μg/mL) inhibited colony formation after 10 days, suggesting their potential chronic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Carretero, M. I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 21, 155–163 (2002).

    Article  CAS  Google Scholar 

  2. Ferrand, T. & Yvon, J. Thermal properties of clay pastes for pelotherapy. Appl. Clay Sci. 6, 21–38 (1991).

    Article  Google Scholar 

  3. Robertson, R. H. S. Cadavers, chloreras and clays. Br. Miner. Soc. Bull. 113, 3–7 (1996).

    Google Scholar 

  4. Veniale, F. et al. Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl. Clay Sci. 25, 135–148 (2004).

    Article  CAS  Google Scholar 

  5. Nair, B. P., Pavithran, C., Sudha, J. D. & Prasad, V. S. Microvesicles through self-assembly of polystyreneclay nanocomposite. Langmuir 26, 1431–1434 (2010).

    Article  PubMed  CAS  Google Scholar 

  6. Patel, M. J., Gundabala, V. R. & Routh, A. F. Modeling film formation of polymer-clay nanocomposite particles. Langmuir 26, 3962–3971 (2010).

    Article  PubMed  CAS  Google Scholar 

  7. Quan, S. L. et al. Characterization of electrospun poly (p-dioxanone) and poly (p-dioxanone)/clay nanocomposite fibers. J. Nanosci. Nanotechnol. 11, 1609–1612 (2010).

    Article  Google Scholar 

  8. Rhim, J. W., Lee, S. B. & Hong, S. I. Preparation and characterization of agar/clay nanocomposite films: the effect of clay type. J. Food. Sci. 76, 40–48 (2011).

    Article  Google Scholar 

  9. Kim, J. Y. et al. Anticancer drug-inorganic nanohybrid and its cellular interaction. J. Nanosci. Nanotechnol. 7, 3700–3705 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. Oh, J. M. et al. Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand. Adv. Funct. Mater. 19, 1–8 (2009).

    Google Scholar 

  11. Choi, S. J., Oh, J. M. & Choy, J. H. Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. J. Nanosci. Nanotechnol. 10, 2913–2916 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. Choi, S. J., Oh, J. M. & Choy, J. H. Human-related application and nanotoxicology of inorganic particles: complementary aspects. J. Mater. Chem. 18, 615–620 (2008).

    Article  CAS  Google Scholar 

  13. Choy, J. H., Choi, S. J., Oh, J. M. & Park, T. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 36, 122–132 (2007).

    Article  CAS  Google Scholar 

  14. Xu, Z. P. et al. Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA. Int. J. Nanomed. 2, 163–174 (2007).

    CAS  Google Scholar 

  15. Xu, Z. P., Zeng, Q. H., Lu, G. Q. & Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61, 1027–1040 (2006).

    Article  CAS  Google Scholar 

  16. Choi, S. J. & Choy, J. H. Effect of physico-chemical parameters on the toxicity of inorganic nanoparticles. J. Mater. Chem. 21, 5547–5554 (2011).

    Article  CAS  Google Scholar 

  17. Choi, S. J., Oh, J. M. & Choy, J. H. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J. Inorg. Biochem. 103, 463–471 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. Tongamp, W., Zhang, Q. & Saito, F. Mechanochemical route for synthesizing nitrate form of layered double hydroxide. Powder Technol. 185, 43–48 (2008).

    Article  CAS  Google Scholar 

  20. Baek, M. et al. Effect of different forms of anionic nanoclays on cytotoxicity. J. Nanosci. Nanotechnol. 11, 1803–1806 (2011).

    Article  PubMed  CAS  Google Scholar 

  21. Davoren, M. et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol. In Vitro 21, 438–448 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. Herzog, E. et al. A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay. Toxicol. Lett. 174, 49–60 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. Laaksonen, T. et al. Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 20, 1913–1918 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, HE., Kim, IS., Baek, M. et al. Long-term cytotoxicity potential of anionic nanoclays in human cells. Toxicol. Environ. Health Sci. 3, 129–133 (2011). https://doi.org/10.1007/s13530-011-0088-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-011-0088-z

Keywords

Navigation