Skip to main content

Advertisement

Log in

Association of advanced glycation end products (AGEs) with endothelial dysfunction, oxidative stress in gestational diabetes mellitus (GDM)

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background

Advanced glycation end products (AGEs) are major risk factors for vascular complications in diabetes. Its role in gestational diabetes mellitus (GDM) and vascular complications in GDM is not known.

Objective

The present study was aimed to study the association of AGEs with GDM and vascular inflammation.

Methods

Plasma samples from normal pregnant and GDM women (n = 50 each) were obtained from two tertiary referral centers in Tamil Nadu, India. Quantification of AGEs, methylglyoxal (MGO), ICAM-1, and malondialdehyde (MDA) were performed by commercially available ELISA kits.

Results and conclusions

The third trimester fasting blood sugar (101.35 ± 26.15 vs. 81.63 ± 6.14, p < 0.002) and postprandial blood sugar (150.69 ± 23.07 vs 105.79 ± 11.99, p < 0.0001) were significantly high in GDM women compared to normal pregnant women. The concentrations of AGEs (13.18 ± 8.74, p < 0.001), MGO (15.7 ± 13.54, p < 0.02), and ICAM-1 (217.8 ± 86.92, p = 0.005) were significantly higher in GDM women compared to AGEs (2.68 ± 0.89), MGO (9.26 ± 5.38), and ICAM-1 (142.3 ± 38.21) in normal pregnant women. Further, elevated levels of MDA concentration (0.64 ± 0.08, p < 0.002) and low GSH levels (0.19 ± 0.1, p < 0.0001) in the GDM women were indicative of oxidative stress. AGE levels significantly correlated with MDA concentration which indicates AGEs may be responsible for oxidative stress in GDM women. Further, elevated level of ICAM-1 in GDM women suggests endothelial activation which may impact endothelial function. Thus, AGEs may be used as a biomarker during pregnancy to predict vascular complications due to GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GDM:

gestational diabetes mellitus

AGEs:

advanced glycation end products

MGO:

methylglyoxal

MDA:

malondialdehyde

ICAM-1:

intercellular adhesion molecule-1

GSH:

glutathione reduced

BMI:

body mass index

FBS:

fasting blood sugar

PPBS:

postprandial blood sugar

References

  1. Seshiah V, Balaji V, Balaji MS, Sanjeevi CB, Green A. Gestational diabetes mellitus in India. J Assoc Physicians India. 2004;52:707–11.

    CAS  PubMed  Google Scholar 

  2. Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59(7):1396–9. https://doi.org/10.1007/s00125-016-3985-5.

    Article  CAS  PubMed  Google Scholar 

  3. Booth AA, Khalifah RG, Todd P, Hudson BG. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs) novel inhibition of post-Amadori glycation pathways. J Biol Chem. 1997;272(9):5430–7. https://doi.org/10.1074/jbc.272.9.5430.

    Article  CAS  PubMed  Google Scholar 

  4. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984;101(4):527–37. https://doi.org/10.7326/0003-4819-101-4-527.

    Article  CAS  PubMed  Google Scholar 

  5. Forbes JM, Thallas V, Thomas MC, Founds HW, Burns WC, Jerums G, et al. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J. 2003;17(12):1762–4. https://doi.org/10.1096/fj.02-1102fje.

    Article  CAS  PubMed  Google Scholar 

  6. Wendt T, Bucciarelli L, Qu W, Lu Y, Yan SF, Stern DM, et al. Receptor for advanced glycation end products (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes. Curr Atheroscler Rep. 2002;4(3):228–37.

    Article  Google Scholar 

  7. Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res. 1998;37(3):586–600. https://doi.org/10.1016/s0008-6363(97)00233-2.

    Article  CAS  PubMed  Google Scholar 

  8. Loughlin DT, Artlett CM. Precursor of advanced glycation end products mediates ER-stress-induced caspase-3 activation of human dermal fibroblasts through NAD(P)H oxidase 4. PLoS One. 2010;5(6):e11093. https://doi.org/10.1371/journal.pone.0011093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest. 1996;97(1):238–43. https://doi.org/10.1172/JCI118397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamagishi S, Nakamura N, Suematsu M, Kaseda K, Matsui T. Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med. 2015;21(Suppl 1):S32–40. https://doi.org/10.2119/molmed.2015.00067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ueda S, Yamagishi S, Yokoro M, Okuda S. Role of asymmetric dimethylarginine in cardiorenal syndrome. Curr Pharm Des. 2014;20(14):2448–55.

    Article  CAS  Google Scholar 

  12. Ojima A, Ishibashi Y, Matsui T, Maeda S, Nishino Y, Takeuchi M, et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am J Pathol. 2013;182(1):132–41. https://doi.org/10.1016/j.ajpath.2012.09.016.

    Article  CAS  PubMed  Google Scholar 

  13. Ando R, Ueda S, Yamagishi S, Miyazaki H, Kaida Y, Kaifu K, et al. Involvement of advanced glycation end product-induced asymmetric dimethylarginine generation in endothelial dysfunction. Diab Vasc Dis Res. 2013;10(5):436–41. https://doi.org/10.1177/1479164113486662.

    Article  CAS  PubMed  Google Scholar 

  14. Litwinoff E, Hurtado Del Pozo C, Ramasamy R, Schmidt AM. Emerging targets for therapeutic development in diabetes and its complications: the RAGE signaling pathway. Clin Pharmacol Ther. 2015;98(2):135–44. https://doi.org/10.1002/cpt.148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rabbani N, Thornalley PJ. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids. 2012;42(4):1133–42. https://doi.org/10.1007/s00726-010-0783-0.

    Article  CAS  PubMed  Google Scholar 

  16. Dupont WD, Plummer WD Jr. Power and sample size calculations for studies involving linear regression. Control Clin Trials. 1998;19(6):589–601.

    Article  CAS  Google Scholar 

  17. International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–82. https://doi.org/10.2337/dc09-1848.

    Article  CAS  PubMed Central  Google Scholar 

  18. Deepa M, Pradeepa R, Rema M, Mohan A, Deepa R, Shanthirani S, et al. The Chennai Urban Rural Epidemiology Study (CURES)- study design and methodology (urban component) (CURES-1). J Assoc Physician India. 2003;51:863–70.

    CAS  Google Scholar 

  19. Kelstrup L, Damm P, Mathiesen ER, Hansen T, Vaag AA, Pedersen O, et al. Insulin resistance and impaired pancreatic β-cell function in adult offspring of women with diabetes in pregnancy. J Clin Endocrinol Metab. 2013 Sep;98(9):3793–801. https://doi.org/10.1210/jc.2013-1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo ZC, Fraser WD, Julien P, Deal CL, Audibert F, Smith GN, et al. Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med Hypotheses. 2006;66(1):38–44. https://doi.org/10.1016/j.mehy.2005.08.020.

    Article  CAS  PubMed  Google Scholar 

  21. Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal. 2011;15(12):3061–100. https://doi.org/10.1089/ars.2010.3765.

    Article  CAS  PubMed  Google Scholar 

  22. Rajaraman B, Ramadas N, Krishnasamy S, Ravi V, Pathak A, Devasena CS, et al. Hyperglycaemia cause vascular inflammation through advanced glycation end products/early growth response-1 axis in gestational diabetes mellitus. Mol Cell Biochem. 2019;456(1–2):179–90. https://doi.org/10.1007/s11010-019-03503-0.

    Article  CAS  PubMed  Google Scholar 

  23. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52(3):812–7. https://doi.org/10.2337/diabetes.52.3.812.

    Article  CAS  PubMed  Google Scholar 

  24. Monnier VM, Sell DR, Genuth S. Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci. 2005;1043:567–81. https://doi.org/10.1196/annals.1333.065.

    Article  CAS  PubMed  Google Scholar 

  25. Sampathkumar R, Balasubramanyam M, Rema M, Premanand C, Mohan V. A novel advanced glycation index and its association with diabetes and microangiopathy. Metabolism. 2005;54(8):1002–7. https://doi.org/10.1016/j.metabol.2005.02.017.

    Article  CAS  PubMed  Google Scholar 

  26. Anitha B, Sampathkumar R, Balasubramanyam M, Rema M. Advanced glycation index and its association with severity of diabetic retinopathy in type 2 diabetic subjects. J Diabetes Complicat. 2008;22(4):261–6. https://doi.org/10.1016/j.jdiacomp.2007.05.005.

    Article  PubMed  Google Scholar 

  27. Gokulakrishnan K, Deepa R, Sampathkumar R, Balasubramanyam M, Mohan V. Association of leukocyte count with varying degrees of glucose intolerance in Asian Indians: the Chennai Urban Rural Epidemiology Study (CURES-26). Metab Syndr Relat Disord. 2009;7(3):205–10. https://doi.org/10.1089/met.2008.0024.

    Article  CAS  PubMed  Google Scholar 

  28. Uribarri J, Cai W, Woodward M, Tripp E, Goldberg L, Pyzik R, et al. Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: a link between healthy and unhealthy obesity? J Clin Endocrinol Metab. 2015;100(5):1957–66. https://doi.org/10.1210/jc.2014-3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mericq V, Piccardo C, Cai W, Chen X, Zhu L, Striker GE, et al. Maternally transmitted and food-derived glycotoxins a factor preconditioning the young to diabetes? Diabetes Care. 2010;33(10):2232–7. https://doi.org/10.2337/dc10-1058.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miyazawa N, Abe M, Souma T, Tanemoto M, Abe T, Nakayama M, et al. Methylglyoxal augments intracellular oxidative stress in human aortic endothelial cells. Free Radic Res. 2010;44(1):101–7. https://doi.org/10.3109/10715760903321788.

    Article  CAS  PubMed  Google Scholar 

  31. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994;269(13):9889–97.

    CAS  PubMed  Google Scholar 

  32. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280(5):E685–94.

    Article  CAS  Google Scholar 

  33. Jialal I, Devaraj S, Venugopal SK. Oxidative stress, inflammation, and diabetic vasculopathies: the role of alpha tocopherol therapy. Free Radic Res. 2002;36(12):1331–6.

    Article  CAS  Google Scholar 

  34. Morgan PE, Dean RT, Davies MJ. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch Biochem Biophys. 2002;403(2):259–69.

    Article  CAS  Google Scholar 

  35. Deuther-Conrad W, Loske C, Schinzel R, Dringen R, Riederer P, Münch G. Advanced glycation endproducts change glutathione redox status in SH-SY5Y human neuroblastoma cells by a hydrogen peroxide dependent mechanism. Neurosci Lett. 2001;312(1):29–32. https://doi.org/10.1016/s0304-3940(01)02174-7.

    Article  CAS  PubMed  Google Scholar 

  36. Neumann A, Schinzel R, Palm D, Riederer P, Münch G. High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression. FEBS Lett. 1999;453(3):283–7. https://doi.org/10.1016/s0014-5793(99)00731-0.

    Article  CAS  PubMed  Google Scholar 

  37. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63(4):582–92. https://doi.org/10.1016/j.cardiores.2004.05.001.

    Article  CAS  PubMed  Google Scholar 

  38. Kautzky-Willer A, Fasching P, Jilma B, Waldhäusl W, Wagner OF. Persistent elevation and metabolic dependence of circulating E-selectin after delivery in women with gestational diabetes mellitus. J Clin Endocrinol Metab. 1997;82(12):4117–21.

    Article  CAS  Google Scholar 

  39. Sultan SA, Liu W, Peng Y, Roberts W, Whitelaw D, Graham AM. The role of maternal gestational diabetes in inducing fetal endothelial dysfunction. J Cell Physiol. 2015;230(11):2695–705. https://doi.org/10.1002/jcp.24993.

    Article  CAS  PubMed  Google Scholar 

  40. Poniedziałek-Czajkowska E, Mierzyński R, Szymula D, Leszczyńska-Gorzelak B, Oleszczuk J. Intercellular adhesion molecule and endogenous NOS inhibitor: asymmetric dimethylarginine in pregnant women with gestational diabetes mellitus. J Diabetes Res. 2016;2016:1342643. https://doi.org/10.1155/2016/1342643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the DST–Fast track scheme by Ministry of Science and Technology, India (Grant No. SB/FT/LS-432-2012) and TRR funded by SASTRA deemed to be University awarded to Dr. Srinivasan Vedantham, Senior Assistant Professor, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nirupama Ramadas or Srinivasan Vedantham.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Ethical committee approval (EC/AP/423/12/2015 & MCRC.IEC#001, 2015) and written informed consent were obtained from all study participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnasamy, S., Rajaraman, B., Ravi, V. et al. Association of advanced glycation end products (AGEs) with endothelial dysfunction, oxidative stress in gestational diabetes mellitus (GDM). Int J Diabetes Dev Ctries 40, 276–282 (2020). https://doi.org/10.1007/s13410-019-00766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-019-00766-7

Keywords

Navigation