Skip to main content

Advertisement

Log in

In vitro anti-hyperglycemia properties of the aqueous stem bark extract from Strychnos henningsii (Gilg)

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Strychnos henningsii (SH) is a plant commonly used in southern African traditional medicine for the management of diabetes mellitus. Previous in vivo studies showed that a stem bark extract improves glycemic control in a diabetic animal model. Meanwhile, the mechanism of action has not been elucidated. The present study therefore investigated various in vitro models known to target glucose homeostasis and its direct complications. The plant extract was found to stimulate both basal and insulin stimulated glucose uptake in differentiated 3T3-L1 cells but not in Chang liver cells. The effect on 3T3-L1 cells appears independent of PPARγ as the extract did not stimulate adipogenesis. Although, SH extract was inhibitory toward intestinal alpha glucosidase, the physiological relevance is doubtful based on the recommended dosages. The extract strongly inhibited protein glycation which, at least in part, may be explained by the antioxidant and phenolic content of this plant. Cytotoxicity in Chang liver cells yielded an IC50 value of 130.0 μg/mL raising concern that continual exposure to this herbal remedy may initiate hepatotoxicity. The finding from this study suggests that SH extract may attenuate hyperglycemia through enhanced peripheral tissue glucose utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jakus V, Hrnciarova M, Carsky J, Krahulec B, Rietbrock N. Incubation of non enzymatic protein glycation and lipid peroxidation by drugs with antioxidant activity. Life Sci. 1999;65:1991–3.

    Article  PubMed  CAS  Google Scholar 

  2. Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes. 2003;52:453–62.

    Article  PubMed  CAS  Google Scholar 

  3. Surekha RH, Srikanh BMV, Jharna P, Ramachandra RV, Dayasagar RV, Jyothy A. Oxidative stress and total antioxidant status in myocardial infarction and renal complications. Singap Med J. 2007;48:137–42.

    CAS  Google Scholar 

  4. Ebbeling CB, Ludwig DS. Treating obesity in youth: should dietary glycemic load be a consideration? Adv Pediatr. 2001;48:179–212.

    PubMed  CAS  Google Scholar 

  5. Edwin E, Sheeja E, Gupta VB, Jain DC. Fight diabetes the herbal way review. Express Pharma. 2008;1:41–2.

    Google Scholar 

  6. Oyedemi SO, Bradley G, Afolayan AJ. Ethnobotanical survey of medicinal plants used for the management of diabetes mellitus in the Nkonkobe Municipality of South Africa. J Med Plant Res. 2009;12:1040–4.

    Google Scholar 

  7. Kareru PG, Kenji GM, Gachanja AN, Keriko JM, Mungai G. Traditional medicines among the Embu and Mbeere peoples of Kenya. Afr J Trad Compl Alter Med. 2007;4:75–86.

    Google Scholar 

  8. Angenot L, Tits M. Isolation of a New Alkaloid (O-Acetylretuline) and a Triterpenoid (Friedelin) from Strychnos henningsii of Zaire. Planta Med. 1981;41:240–3.

    Article  PubMed  CAS  Google Scholar 

  9. Oyedemi SO, Bradley G, Afolayan AJ. Beneficial effect of aqueous stem bark extracts of Strychnos henningsii Gilg in streptozotocin-nicotinamide induced type 2 diabetic wistar rats. Int J Pharmacol. 2011;7:773–81.

    Article  Google Scholar 

  10. van de Venter M, Roux S, Bungu LC, Louw J, Crouch NC, Grace OM, et al. Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. J Ethnopharmacol. 2008;119:81–6.

    Article  PubMed  Google Scholar 

  11. Matsuura N, Aradate T, Sasaki C, Kojima H, Ohara M, Hasegawa J, et al. Screening system for the Maillard reaction inhibitor from natural products extracts. J Health Sci. 2002;48:520–6.

    Article  CAS  Google Scholar 

  12. Sancheti S, Sancheti S, Seo SY. Evaluation of antiglycosidasae and anticholinesterase activities of Boehmerianivea. Pak J Pharm Sci. 2010;23:236–40.

    PubMed  Google Scholar 

  13. Zhizhuang X, Storms R, Tsang A. Microplate-based carboxymethyl-cellulose assay for endoglucanase activity. Anal Biochem. 2005;342:176–8.

    Article  Google Scholar 

  14. Lister E, Wilson P. Measurement of total phenolics and ABTS assay for antioxidant activity (personal communication). Lincoln: Crop Research Institute; 2001.

    Google Scholar 

  15. Benzie FF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–23.

    Article  PubMed  CAS  Google Scholar 

  16. Pessin JE, Thurmond DC, Elmendorf JS, Coker KJ, Okada S. Molecular basis of insulin-stimulated GLUT 4 vesicle trafficking. J Biol Chem. 2000;274:2593–6.

    Article  Google Scholar 

  17. Rang HP, Dale MM, Ritters JM. The endocrine pancreas and the control of blood glucose. In: Barbara S, Beasley S, editors. Pharmacology. U. K. Longman group Ltd.; 1991. p. 403–10.

  18. Lenzen S. The mechanisms of alloxan and streptozotocin induced diabetes. Diabetologia. 2008;51:216–26.

    Article  PubMed  CAS  Google Scholar 

  19. Greven WL, Smith JM, Rommes JH, Spronk PE. Accumulation of advanced glycation end (AGEs) products in intensive care patients: an observational prospective study. BMC Clin Pathol. 2010;10:4–9.

    Article  PubMed  Google Scholar 

  20. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky L, Darnell J. Molecular cell biology. 5th ed. Freeman books; 2004.

  21. Chen J, Sadowski HB, Kohanski RA, Wang L. Stat5 is a physiological substrate of the insulin receptor. Nat Acad Sci Proc. 1996;94:2295–300.

    Article  Google Scholar 

  22. Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Nat Acad Sci Proc. 1997;94:9660–4.

    Article  CAS  Google Scholar 

  23. Zierath JR, Wallberg-Henriksson H. From receptor to effector: insulin signal transduction in skeletal muscle from type II diabetic patients. Ann N Y Acad Sci. 2002;967:120–34.

    Article  PubMed  CAS  Google Scholar 

  24. Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81:4059–67.

    Article  PubMed  CAS  Google Scholar 

  25. Dominguez LJ, Davidoff AJ, Srinivas PR, Standley PR, Walsh MF, Sowers JR. Effects of metformin on tyrosine kinase activity, glucose transport, and intracellular calcium in rat vascular smooth muscle. Endocrinol. 1996;137:113–21.

    Article  CAS  Google Scholar 

  26. Ines P, Jianjun B, Liyan P, Michael NS. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev. 2010;31:25–51.

    Article  Google Scholar 

  27. Philippe G, Angenot L, Tits M, Frédérich M. About the toxicity of some Strychnos species and their alkaloids. Toxicon. 2004;44:405–16.

    Article  PubMed  CAS  Google Scholar 

  28. Philippe G, Prost E, Nuzillard JM, Zèches-Hanrot M, Tits M, Angenot L, et al. Strychnohexamine from Strychnos icaja, a naturally occuring trimeric indolomonoterpenic alkaloid. Tetrahedron. 2002;43:3387–90.

    Article  CAS  Google Scholar 

  29. Neuwinger HD. Alkaloids in arrow poisons. In: Roberts MC, Wink M, editors. Alkaloids: biochemistry, ecology and medicinal applications. New York: Plenum Press; 1998. p. 45–84.

    Google Scholar 

  30. Ulrich P, Cerami A. Protein glycation, diabetes and aging. Recent Prog Horm Res. 2001;56:1–21.

    Article  PubMed  CAS  Google Scholar 

  31. Singh SN, Vats P, Suri S, Shyam R, Kumria MML, Ranganathan S. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol. 2001;76:269–77.

    Article  PubMed  CAS  Google Scholar 

  32. Kiho T, Yamane A, Hui J, Usui S, Ukai S. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Phytother Res. 2000;14:647–9.

    Article  Google Scholar 

  33. Ani V, Akhilender NK. Antihyperglycaemic effect of polyphenolic components of black/bitter cumin seeds Centratherum anthelminticum (Willd.) Kuntz. Eur Food Res Technol. 2008;226:897–903.

    Article  CAS  Google Scholar 

  34. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley P, Pridham JB. The relative activities of plant-derived polyphenolic flavonoid. Free Radic Res. 1995;22:375–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank National Research Foundation (NRF) of South Africa for their financial support.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Afolayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyedemi, S., Koekemoer, T., Bradley, G. et al. In vitro anti-hyperglycemia properties of the aqueous stem bark extract from Strychnos henningsii (Gilg). Int J Diabetes Dev Ctries 33, 120–127 (2013). https://doi.org/10.1007/s13410-013-0120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-013-0120-8

Keywords

Navigation