Skip to main content
Log in

Synthesis of gold nanoparticles using Euphorbia tirucalli latex and the microwave method

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

Uniformly sized and shaped gold nanoparticles (AuNP) were produced by microwave irradiation using Euphorbia tirucalli latex. The AuNPs were characterized by ultraviolet visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering, zeta potential, and transmission electron microscopy (TEM). UV–Vis analysis was employed to detect the characteristic surface plasmon resonance pattern of the AuNPs (550 nm). The carboxylic and polyphenolic groups were associated with the euphol-capped AuNP, which was confirmed using FTIR spectroscopy. The AuNPs studied here show a z-average diameter varying from 35 to 500 ± 0.8 nm. TEM reveals that the particles were spherical and polydispersed. The latex itself is very toxic and can be harmful during manipulation, thus highlighting a negative aspect in it use. However, we have demonstrated that the isolation procedure did not impair the reduction action of the dry latex powder. This study provides a robust solution for the synthesis of stable capped gold nanoparticles. Furthermore, the dried powdered E. tirucalli latex seems to be an attractive capping agent for nanoparticles in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mwine J, Van Damme P, Hastilestari BR, Papenbrock J (2013) Euphorbia tirucalli L. (Euphorbiaceae)—the miracle tree: current status of knowledge. In: African natural plant products volume II: discoveries and challenges in chemistry, health, and nutrition, vol 1127. ACS symposium series, vol 1127. American Chemical Society, pp 3–17. doi: 10.1021/bk-2013-1127.ch001

    Google Scholar 

  2. Tabassum N, Hamdani M (2014) Plants used to treat skin diseases. Pharmacogn Rev 8(15):52–60. https://doi.org/10.4103/0973-7847.125531

    Article  Google Scholar 

  3. Joseph S, Mathew B (2015) Microwave-assisted facile green synthesis of silver nanoparticles and spectroscopic investigation of the catalytic activity. Bull Mater Sci 38(3):659–666. https://doi.org/10.1007/s12034-015-0892-1

    Article  CAS  Google Scholar 

  4. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45(47):7896–7936. https://doi.org/10.1002/anie.200602454

    Article  Google Scholar 

  5. Hutchings GJ, Brust M, Schmidbaur H (2008) Gold-an introductory perspective. Chem Soc Rev 37(9):1759–1765. https://doi.org/10.1039/B810747P

    Article  CAS  Google Scholar 

  6. Rodriguez P, Garcia-Araez N, Koverga A, Frank S, Koper MTM (2010) CO electroxidation on gold in alkaline media: a combined electrochemical, spectroscopic, and DFT study. Langmuir 26(14):12425–12432. https://doi.org/10.1021/la1014048

    Article  CAS  Google Scholar 

  7. Hashmi AS, Schafer S, Wolfle M, Diez Gil C, Fischer P, Laguna A, Blanco MC, Gimeno MC (2007) Gold-catalyzed benzylic C-H activation at room temperature. Angew Chem Int Ed Engl 46(32):6184–6187. https://doi.org/10.1002/anie.200701521

    Article  CAS  Google Scholar 

  8. Mikami Y, Dhakshinamoorthy A, Alvaro M, Garcia H (2013) Catalytic activity of unsupported gold nanoparticles. Cat Sci Technol 3(1):58–69. https://doi.org/10.1039/C2CY20068F

    Article  CAS  Google Scholar 

  9. Han J, Liu Y, Guo R (2009) Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki–Miyaura cross-coupling reaction in water. J Am Chem Soc 131(6):2060–2061. https://doi.org/10.1021/ja808935n

    Article  CAS  Google Scholar 

  10. Bond GC (2016) Hydrogenation by gold catalysts: an unexpected discovery and a current assessment. Gold Bull 49(3–4):53–61. https://doi.org/10.1007/s13404-016-0182-8

    Article  CAS  Google Scholar 

  11. Hayashi T, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178(2):566–575. https://doi.org/10.1006/jcat.1998.2157

    Article  CAS  Google Scholar 

  12. Laird BJA, Scott AC, Colvin LA, McKeon A-L, Murray GD, Fearon KCH, Fallon MT (2011) Cancer pain and its relationship to systemic inflammation: an exploratory study. PAIN 152(2):460–463. https://doi.org/10.1016/j.pain.2010.10.035

    Article  Google Scholar 

  13. Avelar BA, Lélis FJN, Avelar RS, Weber M, Souza-Fagundes EM, Lopes MTP, Martins-Filho OA, Brito-Melo GEA (2011) The crude latex of Euphorbia tirucalli modulates the cytokine response of leukocytes, especially CD4+ T lymphocytes. Rev Bras 21:662–667

    CAS  Google Scholar 

  14. Rajkuberan C, Prabukumar S, Sathishkumar G, Wilson A, Ravindran K, Sivaramakrishnan S (2016) Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2016.01.002

    Article  CAS  Google Scholar 

  15. Nakkala JR, Mata R, Sadras SR (2016) The antioxidant and catalytic activities of green synthesized gold nanoparticles from Piper longum fruit extract. Process Saf Environ Prot 100:288–294. https://doi.org/10.1016/j.psep.2016.02.007

    Article  CAS  Google Scholar 

  16. Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55(36):9557–9577. https://doi.org/10.1021/acs.iecr.6b00861

    Article  CAS  Google Scholar 

  17. Majumdar R, Bag BG, Maity N (2013) Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity. Int Nano Lett 3(1):53. https://doi.org/10.1186/2228-5326-3-53

    Article  CAS  Google Scholar 

  18. Kumar B, Smita K, Cumbal L (2016) Biosynthesis of silver nanoparticles using Lantana camara flower extract and its application. J Sol-Gel Sci Technol 78(2):285–292. https://doi.org/10.1007/s10971-015-3941-8

    Article  CAS  Google Scholar 

  19. Liu W, Xu F, Li Y, Hu X, Dong B, Xiao Y (2016) Discussion on microwave-matter interaction mechanisms by in situ observation of “core-shell” microstructure during microwave sintering. Materials 9(3):120. https://doi.org/10.3390/ma9030120

    Article  CAS  Google Scholar 

  20. Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2015) Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One 10(7):e0131178

    Article  Google Scholar 

  21. Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE (2014) Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain Chem Eng 2(3):367–376. https://doi.org/10.1021/sc4003664

    Article  CAS  Google Scholar 

  22. Kahrilas GA, Haggren W, Read RL, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE (2014) Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustain Chem Eng 2(4):590–598. https://doi.org/10.1021/sc400487x

    Article  CAS  Google Scholar 

  23. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707. https://doi.org/10.1021/jp061667w

    Article  CAS  Google Scholar 

  24. Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10(1):147. https://doi.org/10.1186/s11671-015-0856-9

    Article  Google Scholar 

  25. Punuri JB, Sharma P, Sibyala S, Tamuli R, Bora U (2012) Piper betle-mediated green synthesis of biocompatible gold nanoparticles. Int Nano Lett 2(1):18. https://doi.org/10.1186/2228-5326-2-18

    Article  Google Scholar 

  26. Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3(1):44. https://doi.org/10.1186/2193-8865-3-44

    Article  Google Scholar 

  27. Jasuja K, Linn J, Melton S, Berry V (2010) Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic, electrical, and Raman properties. J Phys Chem Lett 1(12):1853–1860. https://doi.org/10.1021/jz100580x

    Article  CAS  Google Scholar 

  28. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791. https://doi.org/10.1039/B711490G

    Article  CAS  Google Scholar 

  29. Mali PY, Panchal SS (2017) Euphorbia tirucalli L.: review on morphology, medicinal uses, phytochemistry and pharmacological activities. Asian Pac J Trop Biomed 7(7):603–613. https://doi.org/10.1016/j.apjtb.2017.06.002

    Article  Google Scholar 

  30. Wal A (2013) Medicinal value of Euphorbia tirucalli. Int J Pharm Biol Arch 4(1)

  31. Rajasekaran P, Swaminathan KR, Jayapragasam M (1989) Biogas production potential of Euphorbia tirucalli L. along with cattle manure. Biol Wastes 30(1):75–77

    Article  CAS  Google Scholar 

  32. Jyothi TM, Shankariah MM, Prabhu K, Lakshminarasu S, Srinivasa GM, Ramachandra SS (2008) Hepatoprotective and antioxidant activity of Euphorbia tirucalli. IJPT 7(1):25–30

    CAS  Google Scholar 

  33. Tu W, Liu H (2000) Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. J Mater Chem 10(9):2207–2211. https://doi.org/10.1039/B002232M

    Article  CAS  Google Scholar 

  34. Augustine AK, Nampoori VPN, Kailasnath M (2014) Rapid synthesize of gold nanoparticles by microwave irradiation method and its application as an optical limiting material. Optik Int J Light Electron Optics 125(22):6696–6699. https://doi.org/10.1016/j.ijleo.2014.08.075

    Article  CAS  Google Scholar 

  35. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  Google Scholar 

  36. Leng W, Pati P, Vikesland PJ (2015) Room temperature seed mediated growth of gold nanoparticles: mechanistic investigations and life cycle assesment. Environ Sci : Nano 2(5):440–453. https://doi.org/10.1039/C5EN00026B

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian National Council for Scientific and Technological Development (CNPq), the Brazilian Coordination for the Improvement of Higher Educational Personnel (CAPES), the Federal District Research Foundation (FAPDF), and the University of Brasilia Grant Commissions for the financial support. The authors also thank the LabMic/UFG for conducting the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claure N. Lunardi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunardi, C.N., Barros, M.P.F., Rodrigues, M.L. et al. Synthesis of gold nanoparticles using Euphorbia tirucalli latex and the microwave method. Gold Bull 51, 131–137 (2018). https://doi.org/10.1007/s13404-018-0231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-018-0231-6

Keywords

Navigation