Skip to main content

Advertisement

Log in

Mild chronic hypoxia-induced HIF-2α interacts with c-MYC through competition with HIF-1α to induce hepatocellular carcinoma cell proliferation

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Hepatocellular carcinoma (HCC) has emerged as a leading cause of cancer-related deaths globally, in which hypoxia and activated hypoxia-inducible factors (HIFs) play important roles. The sibling rivalry between HIF-1α and HIF-2α in hypoxic tumor growth and progression still remains to be resolved, including in HCC. In this study, we aimed to analyze the mechanism by which HIF-1α and HIF-2α balance the proliferative response of HCC cells to hypoxia.

Methods

The expression of HIF-1α, HIF-2α, c-MYC, Rictor and Raptor in corresponding tumor and non-tumor tissues from twenty-six patients with HCC was analyzed. The relationships between HIF-1α and HIF-2α and their respective effects were evaluated further in vitro in hypoxic HCC cells using co-immunoprecipitation, chromatin immunoprecipitation, in situ proximity ligation, annexin V-FITC/PI staining apoptosis and MTT assay. In addition, short hairpin RNA (shRNA) transfections targeting HIF-1α/2α and Rictor and Western blotting were applied in HCC cells to study the underlying mechanism.

Results

We found that HIF-2α expression showed a positive correlation with c-MYC expression in tumor tissues, whereas HIF-1α did not. In vitro, increased HCC cell proliferation and an increased interaction between HIF-2α and c-MYC were observed under mild chronic hypoxic conditions. Although mild hypoxia led to HIF-1α, HIF-2α and c-MYC up-regulation, we found that mTORC2-regulated HIF-2α competed with HIF-1α to bind to c-MYC. Moreover, we found that HIF-2α knockdown decreased the expression of downstream c-MYC, suppressed hypoxic cell proliferation, and induced HCC cell apoptosis, whereas HIF-1α knockdown did not. Additionally, we found that the PI3K inhibitor apitolisib counteracted the effect of HIF-2α, thereby inducing HCC cell apoptosis.

Conclusions

Our data highlight a role of HIF-2α in activating and binding c-MYC, thereby inducing HCC cell proliferation during mild chronic hypoxia. The PI3K/mTORC2/HIF-2α/c-MYC axis may play a key role in this process. The PI3K inhibitor apitolisib may serve as a potential treatment option for patients suffering from HCC, especially in cases with rapidly growing tumors under mild chronic hypoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data and material are available upon reasonable request.

Code Availability

Not applicable.

Abbreviations

HCC:

hepatocellular carcinoma

HIFs:

hypoxia-inducible factors

TAE/TACE:

transcatheter arterial (chemo) embolization

HK2:

glycolytic enzyme hexokinase 2

PDK1:

pyruvate dehydrogenase kinase 1

VEGFA:

vascular endothelial growth factor A

mTOR:

mammalian target of rapamycin

DAPI:

4′,6-diamidino-2-phenylindole

CoCl2:

Cobalt chloride

IC50:

50 % cell growth inhibitory concentrations

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PLA:

in situ Proximity Ligation Assay

Co-IP:

Co-Immunoprecipitation

shRNA:

Short hairpin RNA

ChIP:

Chromatin Immunoprecipitation

HREs:

Hypoxia-Response Element

UICC:

Union for International Cancer Control

PHD:

prolyl-4-hydroxylase

RCC:

renal cell carcinoma

References

  1. A. Forner, M. Reig, J. Bruix, Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018)

    Article  PubMed  Google Scholar 

  2. A. Villanueva, Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. J.M. Llovet, R. Montal, D. Sia, R.S. Finn, Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15, 599–616 (2018)

    Article  PubMed  Google Scholar 

  4. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020)

    Article  PubMed  Google Scholar 

  5. S.R. McKeown, Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol. 87, 20130676 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. G.K. Wilson, D.A. Tennant, J.A. McKeating, Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J. Hepatol. 61, 1397–1406 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. C. Chen, T. Lou, Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget 8, 46691–46703 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  8. C. Mendez-Blanco, F. Fondevila, A. Garcia-Palomo, J. Gonzalez-Gallego, J.L. Mauriz, Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp. Mol. Med. 50, 1–9 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. L. Tang, J. Zeng, P. Geng, C. Fang, Y. Wang, M. Sun, C. Wang, J. Wang, P. Yin, C. Hu, L. Guo, J. Yu, P. Gao, E. Li, Z. Zhuang, G. Xu, Y. Liu, Global metabolic profiling identifies a pivotal role of proline and hydroxyproline metabolism in supporting hypoxic response in hepatocellular carcinoma. Clin. Cancer Res. 24, 474–485 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. G.L. Semenza, Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K. Helczynska, A.M. Larsson, L. Holmquist Mengelbier, E. Bridges, E. Fredlund, S. Borgquist, G. Landberg, S. Pahlman, K. Jirstrom, Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res. 68, 9212–9220 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. R. Noguera, E. Fredlund, M. Piqueras, A. Pietras, S. Beckman, S. Navarro, S. Pahlman, HIF-1alpha and HIF-2alpha are differentially regulated in vivo in neuroblastoma: high HIF-1alpha correlates negatively to advanced clinical stage and tumor vascularization. Clin. Cancer Res. 15, 7130–7136 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. W.Y. Kim, S. Perera, B. Zhou, J. Carretero, J.J. Yeh, S.A. Heathcote, A.L. Jackson, P. Nikolinakos, B. Ospina, G. Naumov, K.A. Brandstetter, V.J. Weigman, S. Zaghlul, D.N. Hayes, R.F. Padera, J.V. Heymach, A.L. Kung, N.E. Sharpless, W.G. Kaelin Jr., K.K. Wong, HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. J. Clin. Invest. 119, 2160–2170 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. N. Qin, A.A. de Cubas, R. Garcia-Martin, S. Richter, M. Peitzsch, M. Menschikowski, J.W. Lenders, H.J. Timmers, M. Mannelli, G. Opocher, M. Economopoulou, G. Siegert, T. Chavakis, K. Pacak, M. Robledo, G. Eisenhofer, Opposing effects of HIF1alpha and HIF2alpha on chromaffin cell phenotypic features and tumor cell proliferation: Insights from MYC-associated factor X. Int. J. Cancer 135, 2054–2064 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. B. Keith, R.S. Johnson, M.C. Simon, HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. L.E. Huang, Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation. Cell Death Differ. 15, 672–677 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. C.V. Dang, c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J.W. Kim, P. Gao, Y.C. Liu, G.L. Semenza, C.V. Dang, Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Zhang, M. Sattler, G. Tonon, C. Grabher, S. Lababidi, A. Zimmerhackl, M.S. Raab, S. Vallet, Y. Zhou, M.A. Cartron, T. Hideshima, Y.T. Tai, D. Chauhan, K.C. Anderson, K. Podar, Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res. 69, 5082–5090 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. M.R. Doe, J.M. Ascano, M. Kaur, M.D. Cole, Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res. 72, 949–957 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. C. Chen, S. Cai, G. Wang, X. Cao, X. Yang, X. Luo, Y. Feng, J. Hu, c-Myc enhances colon cancer cell-mediated angiogenesis through the regulation of HIF-1α. Biochem. Biophys. Res. Commun. 430, 505–511 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. L. Ma, G. Li, H. Zhu, X. Dong, D. Zhao, X. Jiang, J. Li, H. Qiao, S. Ni, X. Sun, Sun, 2-Methoxyestradiol synergizes with sorafenib to suppress hepatocellular carcinoma by simultaneously dysregulating hypoxia-inducible factor-1 and – 2. Cancer Lett. 355, 96–105 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. M.S. Wiesener, J.S. Jurgensen, C. Rosenberger, C.K. Scholze, J.H. Horstrup, C. Warnecke, S. Mandriota, I. Bechmann, U.A. Frei, C.W. Pugh, P.J. Ratcliffe, S. Bachmann, P.H. Maxwell, K.U. Eckardt, Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 17, 271–273 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. D.M. Sabatini, Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc. Natl. Acad. Sci. U. S. A. 114, 11818–11825 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Laplante, D.M. Sabatini, mTOR signaling at a glance. J. Cell Sci. 122, 3589–3594 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. P. Liu, H. Cheng, T.M. Roberts, J.J. Zhao, Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K.M. Dodd, J. Yang, M.H. Shen, J.R. Sampson, A.R. Tee, mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 34, 2239–2250 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. F. Melendez-Rodriguez, O. Roche, R. Sanchez-Prieto, J. Aragones, Hypoxia-inducible factor 2-dependent pathways driving Von Hippel-Lindau-deficient renal cancer. Front. Oncol. 8, 214 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  29. H. Cam, J.B. Easton, A. High, P.J. Houghton, mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol. Cell 40, 509–520 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Z. Xu, M. Xu, P. Liu, S. Zhang, R. Shang, Y. Qiao, L. Che, S. Ribback, A. Cigliano, K. Evert, R.M. Pascale, F. Dombrowski, M. Evert, X. Chen, D.F. Calvisi, X. Chen, The mTORC2-Akt1 cascade Is crucial for c-Myc to promote hepatocarcinogenesis in mice and humans. Hepatology 70, 1600–1613 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. P. Liu, M. Ge, J. Hu, X. Li, L. Che, K. Sun, L. Cheng, Y. Huang, M.G. Pilo, A. Cigliano, G.M. Pes, R.M. Pascale, S. Brozzetti, G. Vidili, A. Porcu, A. Cossu, G. Palmieri, M.C. Sini, S. Ribback, F. Dombrowski, J. Tao, D.F. Calvisi, L. Chen, X. Chen, A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis. Hepatology 66, 167–181 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. X. Yang, Y. Xu, D. Gao, L. Yang, S.Y. Qian, Dihomo-gamma-linolenic acid inhibits growth of xenograft tumors in mice bearing human pancreatic cancer cells (BxPC-3) transfected with delta-5-desaturase shRNA. Redox Biol. 20, 236–246 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. J.D. Gordan, J.A. Bertout, C.J. Hu, J.A. Diehl, M.C. Simon, HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Mohlin, A. Hamidian, K. von Stedingk, E. Bridges, C. Wigerup, D. Bexell, S. Pahlman, PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma. Cancer Res. 75, 4617–4628 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. T. Powles, M.R. Lackner, S. Oudard, B. Escudier, C. Ralph, J.E. Brown, R.E. Hawkins, D. Castellano, B.I. Rini, M.D. Staehler, A. Ravaud, W. Lin, B. O’Keeffe, Y. Wang, S. Lu, J.M. Spoerke, L.Y. Huw, M. Byrtek, R. Zhu, J.A. Ware, R.J. Motzer, Randomized open-label Phase II trial of apitolisib (GDC-0980), a novel Inhibitor of the PI3K/mammalian target of rapamycin pathway, versus everolimus in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 34, 1660–1668 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S.O. Dolly, A.J. Wagner, J.C. Bendell, H.L. Kindler, L.M. Krug, T.Y. Seiwert, M.G. Zauderer, M.P. Lolkema, D. Apt, R.F. Yeh, J.O. Fredrickson, J.M. Spoerke, H. Koeppen, J.A. Ware, J.O. Lauchle, H.A. Burris III., J.S. de Bono, Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 22, 2874–2884 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. V. Makker, F.O. Recio, L. Ma, U.A. Matulonis, J.O. Lauchle, H. Parmar, H.N. Gilbert, J.A. Ware, R. Zhu, S. Lu, L.Y. Huw, Y. Wang, H. Koeppen, J.M. Spoerke, M.R. Lackner, C.A. Aghajanian, A multicenter, single-arm, open-label, phase 2 study of apitolisib (GDC-0980) for the treatment of recurrent or persistent endometrial carcinoma (MAGGIE study). Cancer 122, 3519–3528 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. M.R. Morris, D.J. Hughes, Y.M. Tian, C.J. Ricketts, K.W. Lau, D. Gentle, S. Shuib, P. Serrano-Fernandez, J. Lubinski, M.S. Wiesener, C.W. Pugh, F. Latif, P.J. Ratcliffe, E.R. Maher, Mutation analysis of hypoxia-inducible factors HIF1A and HIF2A in renal cell carcinoma. Anticancer Res. 29, 4337–4343 (2009)

    CAS  PubMed  Google Scholar 

  39. G. Bangoura, Z.S. Liu, Q. Qian, C.Q. Jiang, G.F. Yang, S. Jing, Prognostic significance of HIF-2alpha/EPAS1 expression in hepatocellular carcinoma. World J. Gastroenterol. 13, 3176–3182 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. Wei, S.M. Piecewicz, L.M. McGinnis, C.M. Taniguchi, S.J. Wiegand, K. Anderson, C.W. Chan, K.X. Mulligan, D. Kuo, J. Yuan, M. Vallon, L. Morton, E. Lefai, M.C. Simon, J.J. Maher, G. Mithieux, F. Rajas, J. Annes, O.P. McGuinness, G. Thurston, A.J. Giaccia, C.J. Kuo, A liver Hif-2alpha-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat. Med. 19, 1331–1337 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Anavi, M. Hahn-Obercyger, Z. Madar, O. Tirosh, Mechanism for HIF-1 activation by cholesterol under normoxia: a redox signaling pathway for liver damage. Free Radic. Biol. Med. 71, 61–69 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. Y. Asai, T. Yamada, S. Tsukita, K. Takahashi, M. Maekawa, M. Honma, M. Ikeda, K. Murakami, Y. Munakata, Y. Shirai, S. Kodama, T. Sugisawa, Y. Chiba, Y. Kondo, K. Kaneko, K. Uno, S. Sawada, J. Imai, Y. Nakamura, H. Yamaguchi, K. Tanaka, H. Sasano, N. Mano, Y. Ueno, T. Shimosegawa, H. Katagiri, Activation of the hypoxia inducible factor 1α subunit pathway in steatotic liver contributes to formation of cholesterol gallstones. Gastroenterology 152(6), 1521–1535.e8 (2017)

  43. W. Hu, S. Zheng, H. Guo, B. Dai, J. Ni, Y. Shi, H. Bian, L. Li, Y. Shen, M. Wu, Z. Tian, G. Liu, M.A. Hossain, H. Yang, D. Wang, Q. Zhang, J. Yu, L. Birnbaumer, J. Feng, D. Yu, Y. Yang, PLAGL2-EGFR-HIF-1/2α signaling loop promotes HCC progression and Erlotinib insensitivity. Hepatology 73, 674-691 (2021)

  44. A. Qu, M. Taylor, X. Xue, T. Matsubara, D. Metzger, P. Chambon, F.J. Gonzalez, Y.M. Shah, Hypoxia-inducible transcription factor 2alpha promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 54, 472–483 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. X. Wang, J. Dong, L. Jia, T. Zhao, M. Lang, Z. Li, C. Lan, X. Li, J. Hao, H. Wang, T. Qin, C. Huang, S. Yang, M. Yu, H. Ren, HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett. 393, 113–124 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. C. He, X.P. Sun, H. Qiao, X. Jiang, D. Wang, X. Jin, X. Dong, J. Wang, H. Jiang, X. Sun, Downregulating hypoxia-inducible factor-2alpha improves the efficacy of doxorubicin in the treatment of hepatocellular carcinoma. Cancer Sci. 103, 528–534 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. H.Z. Imtiyaz, E.P. Williams, M.M. Hickey, S.A. Patel, A.C. Durham, L.J. Yuan, R. Hammond, P.A. Gimotty, B. Keith, M.C. Simon, Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Invest. 120, 2699–2714 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. H. Menrad, C. Werno, T. Schmid, E. Copanaki, T. Deller, N. Dehne, B. Brune, Roles of hypoxia-inducible factor-1alpha (HIF-1alpha) versus HIF-2alpha in the survival of hepatocellular tumor spheroids. Hepatology 51, 2183–2192 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. M. Koshiji, K.K. To, S. Hammer, K. Kumamoto, A.L. Harris, P. Modrich, L.E. Huang, HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol. Cell 17, 793–803 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. M. Koshiji, Y. Kageyama, E.A. Pete, I. Horikawa, J.C. Barrett, L.E. Huang, HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 23, 1949–1956 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. T. Lofstedt, E. Fredlund, L. Holmquist-Mengelbier, A. Pietras, M. Ovenberger, L. Poellinger, S. Pahlman, Hypoxia inducible factor-2alpha in cancer. Cell Cycle 6, 919–926 (2007)

    Article  PubMed  Google Scholar 

  52. L. Holmquist-Mengelbier, E. Fredlund, T. Lofstedt, R. Noguera, S. Navarro, H. Nilsson, A. Pietras, J. Vallon-Christersson, A. Borg, K. Gradin, L. Poellinger, S. Pahlman, Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10, 413–423 (2006)

    Article  CAS  PubMed  Google Scholar 

  53. P. Vaupel, M. Hockel, A. Mayer, Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signal. 9, 1221–1235 (2007)

    Article  CAS  PubMed  Google Scholar 

  54. M.W. Dewhirst, Y. Cao, B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer 8, 425–437 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Q. Lin, X. Cong, Z. Yun, Differential hypoxic regulation of hypoxia-inducible factors 1alpha and 2alpha. Mol. Cancer Res. 9, 757–765 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A.T. Henze, J. Riedel, T. Diem, J. Wenner, I. Flamme, J. Pouyseggur, K.H. Plate, T. Acker, Prolyl hydroxylases 2 and 3 act in gliomas as protective negative feedback regulators of hypoxia-inducible factors. Cancer Res. 70, 357–366 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. M.Y. Koh, R. Lemos Jr., X. Liu, G. Powis, The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res. 71, 4015–4027 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. A. Toschi, E. Lee, N. Gadir, M. Ohh, D.A. Foster, Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J. Biol. Chem. 283, 34495–34499 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. P.M. LoRusso, Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors. J. Clin. Oncol. 34, 3803–3815 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciated the technical support from Mr. Andreas Schmitt and Ms. Weiwei Ma.

Funding

This work was supported by Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (NO. TJ20170110).

Author information

Authors and Affiliations

Authors

Contributions

HM and CFL conceived the project. HM and CFL performed all experiments and drafted the manuscript. MMW and TZ supported the experiments. HKL, GY and YLC collected clinical samples and information. CFL and TQS supervised all studies. All authors participated in preparing the manuscript and approved the submitted and published version.

Corresponding author

Correspondence to Changfu Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethics approval and consent to participate

All our experiments involving human participants were approved by The Ethics Committee of Tianjin Medical University and performed in accordance with the Declaration of Helsinki. We obtained human HCC tissue and adjacent normal tissue from HCC patients at the Tianjin Medical University Cancer Institute and Hospital with informed consent from all patients.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

The expressions and correlations of Rictor and Raptor in HCC patients. A-B. The number of HCC cases with low or high expressions of Rictor and Raptor in different UICC stage (PNG 119 kb)

High Resolution Image (TIF 283 kb)

Fig. S2

HIF-1α or HIF-2α knockdown in mild chronic hypoxic hepatocellular carcinoma cell. (A) The expressions of HIF-1α and HIF-2α in shHIF-1α or shHIF-2α transfected HCC cells treated by Cocl2low for 72 h. (B) The relative fold changes of HIF-1α, HIF-2α and c-MYC in the QRT-PCR analysis and the relative fold changes of c-MYC in the HIF-2α binding ChiP assay from the HCC samples treated with/without Cocl2low for 72 h (PNG 208 kb)

High Resolution Image (TIF 340 kb)

Fig. S3

c-MYC knockdown suppressed cell growth in mild chronic hypoxic hepatocellular carcinoma cell. (A) The expressions of c-MYC in shRNA c-MYC transfected HCC cells treated by Cocl2low for 72 h. (B) Cell proliferation curve of c-MYC knockdown Huh7 and HepG2 in mild hypoxia for 6 days (PNG 219 kb)

High Resolution Image (TIF 319 kb)

Fig. S4

Rictor knockdown in mild chronic hypoxic hepatocellular carcinoma cell. A. The expressions of Rictor in shRictor transfected HCC cells treated by Cocl2low for 72 h (PNG 83 kb)

High Resolution Image (TIF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, H., Yu, G., Li, H. et al. Mild chronic hypoxia-induced HIF-2α interacts with c-MYC through competition with HIF-1α to induce hepatocellular carcinoma cell proliferation. Cell Oncol. 44, 1151–1166 (2021). https://doi.org/10.1007/s13402-021-00625-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00625-w

Keywords

Navigation