Skip to main content

Advertisement

Log in

Differential regulation of autophagy by STAU1 in alveolar rhabdomyosarcoma and non‐transformed skeletal muscle cells

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Recent work has highlighted the therapeutic potential of targeting autophagy to modulate cell survival in a variety of diseases including cancer. Recently, we found that the RNA-binding protein Staufen1 (STAU1) is highly expressed in alveolar rhabdomyosarcoma (ARMS) and that this abnormal expression promotes tumorigenesis. Here, we asked whether STAU1 is involved in the regulation of autophagy in ARMS cells.

Methods

We assessed the impact of STAU1 expression modulation in ARMS cell lines (RH30 and RH41), non-transformed skeletal muscle cells (C2C12) and STAU1-transgenic mice using complementary techniques.

Results

We found that STAU1 silencing reduces autophagy in the ARMS cell lines RH30 and RH41, while increasing their apoptosis. Mechanistically, this inhibitory effect was found to be caused by a direct negative impact of STAU1 depletion on the stability of Beclin-1 (BECN1) and ATG16L1 mRNAs, as well as by an indirect inhibition of JNK signaling via increased expression of Dual specificity phosphatase 8 (DUSP8). Pharmacological activation of JNK or expression silencing of DUSP8 was sufficient to restore autophagy in STAU1-depleted cells. By contrast, we found that STAU1 downregulation in non-transformed skeletal muscle cells activates autophagy in a mTOR-dependent manner, without promoting apoptosis. A similar effect was observed in skeletal muscles obtained from STAU1-overexpressing transgenic mice.

Conclusions

Together, our data indicate an effect of STAU1 on autophagy regulation in ARMS cells and its differential role in non-transformed skeletal muscle cells. Our findings suggest a cancer-specific potential of targeting STAU1 for the treatment of ARMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the findings are available within the article and its supplementary materials. Additional supporting data and material are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Abbreviations

STAU1:

Staufen1

ARMS:

Alveolar Rhabdomyosarcoma

BECN1:

Beclin-1

DUSP8:

Dual specificity phosphatase 8

ERMS:

Embryonal Rhabdomyosarcoma

RBPs:

RNA-binding proteins

GAPDH:

3-phosphate dehydrogenase

LC3:

Microtubule-associated protein 1 light chain 3

BafA1:

Bafilomycin A1

CQ:

Chloroquine

RIP:

RNA immunoprecipitation

p-mTOR:

phospho-mTOR

p-AKT:

phospho-AKT

p-JNK:

phospho-JNK

TA:

Tibialis Anterior

TG:

Transgenic

WT:

Wildtype

References

  1. J. Anderson, A. Gordon, A. McManus, J. Shipley, K. Pritchard-Jones, Disruption of imprinted genes at chromosome region 11p15. 5 in paediatric rhabdomyosarcoma. Neoplasia 1, 340–348 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D.M. Loeb, K. Thornton, O. Shokek, Pediatric soft tissue sarcomas. Surg. Clin. N. Am. 88, 615–627 (2008)

    Article  PubMed  Google Scholar 

  3. E.R. Rudzinski, J.R. Anderson, Y. Chi, J.M. Gastier-Foster, C. Astbury, F.G. Barr, S.X. Skapek, D.S. Hawkins, B.J. Weigel, A. Pappo, Histology, fusion status, and outcome in metastatic rhabdomyosarcoma: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 64, e26645 (2017)

  4. D. Sarkar, S. Ray, M. Saha, P. Chakrabarti, Alveolar rhabdomyosarcoma with multiple distal metastases. A case report and review of literature. BMJ Case Rep. 2012, 006523 (2012)

  5. S. Hettmer, A.J. Wagers, Muscling in: Uncovering the origins of rhabdomyosarcoma. Nat. Med. 16, 171 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. E.R. Rudzinski, J.R. Anderson, D.S. Hawkins, S.X. Skapek, D.M. Parham, L.A. Teot, The World Health Organization classification of skeletal muscle tumors in pediatric rhabdomyosarcoma: a report from the Children’s Oncology Group. Arch. Pathol. Lab. Med. 139, 1281–1287 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  7. K. Hollowood, C.D. Fletcher, Rhabdomyosarcoma in adults. Semin. Diagn. Pathol. 11, 47–57 (1994)

    CAS  PubMed  Google Scholar 

  8. J. Hicks, C. Flaitz, Rhabdomyosarcoma of the head and neck in children. Oral Oncol. 38, 450–459 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. C. Keller, D.C. Guttridge, Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS J. 280, 4323–4334 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. R.J. Davis, C.M. D’Cruz, M.A. Lovell, J.A. Biegel, F.G. Barr, Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54, 2869–2872 (1994)

    CAS  PubMed  Google Scholar 

  11. N. Galili, R.J. Davis, W.J. Fredericks, S. Mukhopadhyay, F.J. Rauscher, B.S. Emanuel, G. Rovera, F.G. Barr, Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat. Genet. 5, 230 (1993)

    Article  CAS  PubMed  Google Scholar 

  12. P. Eguía-Aguilar, B. López-Martínez, C. Retana-Contreras, M. Perezpeña-Diazconti, Alveolar rhabdomyosarcoma: origin and prognostic implications of molecular findings. Bol. Méd. Hosp. Infant. Méx. 73, 405–410 (2016)

    PubMed  Google Scholar 

  13. A.D. Marshall, G.C. Grosveld, Alveolar rhabdomyosarcoma–The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet. Muscle 2, 1–14 (2012)

    Article  CAS  Google Scholar 

  14. C. Perrone, S. Pomella, M. Cassandri, M.R. Braghini, M. Pezzella, F. Locatelli, R. Rota, FAK signaling in rhabdomyosarcoma. Int. J. Mol. Sci. 21, 8422 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  15. O. Oberlin, A. Rey, E. Lyden, G. Bisogno, M.C. Stevens, W.H. Meyer, M. Carli, J.R. Anderson, Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J. Clin. Oncol. 26, 2384–2389 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  16. I. Fierro-Monti, M.B. Mathews, Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem. Sci. 25, 241–246 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. S. Hong, RNA binding protein as an emerging therapeutic target for cancer prevention and treatment. J. Cancer. Prev. 22, 203–210 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  18. B. Pereira, M. Billaud, R. Almeida, RNA-binding proteins in cancer: old players and new actors. Trends Cancer 3, 506–528 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. L. Li, L. Fu, K. Wang, Integrated bioinformatics analysis the function of RNA binding proteins (RBPs) and their prognostic value in breast cancer. Front. Pharmacol. 10, 140 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. T.E.C. Parks, K.A. Marcellus, J. Langill, A. Ravel-Chapuis, J. Michaud, K.N. Cowan, J. Côté, B.J. Jasmin, Novel roles for Staufen1 in embryonal and alveolar rhabdomyosarcoma via c-myc-dependent and-independent events. Sci. Rep. 7, 42342 (2017)

    Article  CAS  Google Scholar 

  21. A. Ravel-Chapuis, G. Belanger, R.S. Yadava, M.S. Mahadevan, L. DesGroseillers, J. Cote, B.J. Jasmin, The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. J. Cell Biol. 196, 699–712 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. E. Bondy-Chorney, T.E.C. Parks, A. Ravel-Chapuis, R. Klinck, L. Rocheleau, M. Pelchat, B. Chabot, B.J. Jasmin, J. Côté, Staufen1 regulates multiple alternative splicing events either positively or negatively in DM1 indicating its role as a disease modifier. PLoS Genet. 12, e1005827 (2016)

  23. A. Ravel-Chapuis, T.E. Crawford, M. Blais-Crépeau, G. Bélanger, C.T. Richer, B.J. Jasmin, The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc–dependent mechanism. Mol. Biol. Cell 25, 3765–3778 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  24. A. Ravel-Chapuis, A. Klein Gunnewiek, G. Bélanger, T.E. Crawford Parks, J. Côté, B.J. Jasmin, Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients. Mol. Biol. Cell 27, 1728–1739 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Galati, C. Boni, M.C. Gerra, M. Lazzaretti, A. Buschini, Autophagy: a player in response to oxidative stress and DNA damage. Oxid. Med. Cell. Longevity 14, 1–12 (2019)

    Article  CAS  Google Scholar 

  26. P. Ravanan, I.F. Srikumar, P. Talwar, Autophagy: The spotlight for cellular stress responses. Life Sci. 188, 53–67 (2017)

  27. D.J. Klionsky, Autophagy. Curr. Biol. 15, R282–R283 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. A. Thorburn, Autophagy and disease. J. Biol. Chem. 293, 5425–5430 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. J. Debnath, Detachment-induced autophagy during anoikis and lumen formation in epithelial acini. Autophagy 4, 351–353 (2008)

    Article  PubMed  Google Scholar 

  30. C. Fung, R. Lock, S. Gao, E. Salas, J. Debnath, Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell 19, 797–806 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J.M.M. Levy, A. Thorburn, Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol. Ther. 131, 130–141 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A.R. Moghadam, daS. Rosa, C. Simone, E. Samiei, J. Alizadeh, J. Field, P. Kawalec, J. Thliveris, M. Akbari, S. Ghavami, J.W. Gordon, Autophagy modulates temozolomide-induced cell death in alveolar Rhabdomyosarcoma cells. Cell Death Discov. 5, 52 (2018)

    Article  CAS  Google Scholar 

  33. J. Zhang, Z. Yang, L. Xie, L. Xu, D. Xu, X. Liu, Statins, autophagy and cancer metastasis. Int. J. Biochem. Cell Biol. 45, 745–752 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. B. Pantic, D. Borgia, S. Giunco, A. Malena, T. Kiyono, S. Salvatori, A. De Rossi, E. Giardina, F. Sangiuolo, E. Pegoraro, Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts. Exp. Cell Res. 342, 39–51 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. N. Klages, R. Zufferey, D. Trono, A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol. Ther. 2, 170–176 (2000)

    Article  CAS  PubMed  Google Scholar 

  36. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. T.E. Crawford Parks, A. Ravel-Chapuis, E. Bondy-Chorney, J. Renaud, J. Côté, B.J. Jasmin, Muscle-specific expression of the RNA-binding protein Staufen1 induces progressive skeletal muscle atrophy via regulation of phosphatase tensin homolog. Hum. Mol. Genet. 26, 1821–1838 (2017)

    Article  PubMed  CAS  Google Scholar 

  38. E. Ji, C. Kim, H. Kang, S. Ahn, M. Jung, Y. Hong, H. Tak, S. Lee, W. Kim, E.K. Lee, RNA binding protein HuR promotes autophagosome formation by regulating expression of autophagy-related proteins 5, 12, and 16 in human hepatocellular carcinoma cells. Mol. Cell. Biol. 39, e00508–e00518 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. Nakatogawa, Regulated degradation: controlling the stability of autophagy gene transcripts. Dev. Cell 34, 132–134 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. J. Viiri, M. Amadio, N. Marchesi, J.M. Hyttinen, N. Kivinen, R. Sironen, K. Rilla, S. Akhtar, A. Provenzani, V.G. D’Agostino, S. Govoni, A. Pascale, H. Agostini, G. Petrovski, A. Salminen, K. Kaarniranta, Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells. PLoS One 8, e69563 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. L. Furic, M. Maher-Laporte, L. DesGroseillers, A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes. RNA 14, 324–335 (2008)

  42. Y. Chen, D.J. Klionsky, The regulation of autophagy - unanswered questions. J. Cell. Sci. 124, 161–170 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. E. Delorme-Axford, D.J. Klionsky, Transcriptional and post-transcriptional regulation of autophagy in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 293, 5396–5403 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Almasi, B.E. Kennedy, M. El-Aghil, A.M. Sterea, S. Gujar, S. Partida-Sanchez, Y. El Hiani, TRPM2 channel-mediated regulation of autophagy maintains mitochondrial function and promotes gastric cancer cell survival via the JNK-signaling pathway. J. Biol. Chem. 293, 3637–3650 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S. Paul, W. Dansithong, K.P. Figueroa, D.R. Scoles, S.M. Pulst, Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat. Commun. 9, 3648 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. C.W. Yun, S.H. Lee, The roles of autophagy in cancer. Int. J. Mol. Sci. 19, 3466 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  47. L.B. Frankel, M. Lubas, A.H. Lund, Emerging connections between RNA and autophagy. Autophagy 13, 3–23 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. P. Torres, O. Ramírez-Núñez, R. Romero-Guevara, G. Barés, A.B. Granado-Serrano, V. Ayala, J. Boada, L. Fontdevila, M. Povedano, D. Sanchís, Cryptic exon splicing function of TARDBP interacts with autophagy in nervous tissue. Autophagy 14, 1398–1403 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. P.S. Acevo-Rodríguez, G. Maldonado, S. Castro-Obregón, G. Hernández, Autophagy regulation by the translation machinery and its implications in cancer. Front. Oncol. 10, 322 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  50. N. Fujikake, M. Shin, S. Shimizu, Association between autophagy and neurodegenerative diseases. Front. Neurosci. 12, 255 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  51. E. Dunlop, A. Tee, mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol. 36, 121–129 (2014)

  52. Y.V. Budovskaya, J.S. Stephan, F. Reggiori, D.J. Klionsky, P.K. Herman, The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J. Biol. Chem. 279, 20663–20671 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. N. Lu, X. Li, R. Tan, J. An, Z. Cai, X. Hu, F. Wang, H. Wang, C. Lu, H. Lu, HIF-1α/Beclin1-mediated autophagy is involved in neuroprotection induced by hypoxic preconditioning. J. Mol. Neurosci. 66, 238–250 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Y. Zhang, P. Chen, H. Hong, L. Wang, Y. Zhou, Y. Lang, JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Exp. Terapeut. Med. 14, 593–599 (2017)

    Article  CAS  Google Scholar 

  55. A. Zeke, M. Misheva, A. Reményi, M.A. Bogoyevitch, JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol. Mol. Biol. Rev. 80, 793–835 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. C. Tournier, C. Dong, T.K. Turner, S.N. Jones, R.A. Flavell, R.J. Davis, MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev. 15, 1419–1426 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. K.I. Patterson, T. Brummer, P.M. O’brien, R.J. Daly, Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem. J. 418, 475–489 (2009)

    Article  CAS  PubMed  Google Scholar 

  58. Y. Chun, J. Kim, Autophagy: an essential degradation program for cellular homeostasis and life. Cells 7, 278 (2018)

    Article  CAS  PubMed Central  Google Scholar 

  59. B. Levine, G. Kroemer, Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. L. Min, E. Choy, R.E. Pollock, C. Tu, F. Hornicek, Z. Duan, Autophagy as a potential target for sarcoma treatment. Biochim. Biophys. Acta (BBA)-Rev. Cancer 1868, 40–50 (2017)

    Article  CAS  Google Scholar 

  61. Y. Cheng, F. Qiu, T. Ikejima, Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells. Autophagy 5, 430–431 (2009)

    Article  PubMed  Google Scholar 

  62. Y. Cheng, F. Qiu, Y. Ye, Z. Guo, S. Tashiro, S. Onodera, T. Ikejima, Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38‐nuclear factor‐kappa B survival pathways in oridonin‐treated murine fibrosarcoma L929 cells. FEBS J. 276, 1291–1306 (2009)

    Article  CAS  PubMed  Google Scholar 

  63. C. Shen, W. Wang, L. Tao, B. Liu, Z. Yang, H. Tao, Chloroquine blocks the autophagic process in cisplatin-resistant osteosarcoma cells by regulating the expression of p62/SQSTM1. Int. J. Mol. Med. 32, 448–456 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. G. Jiao, W. Guo, T. Ren, Q. Lu, Y. Sun, W. Liang, C. Ren, K. Yang, K. Sun, BMPR2 inhibition induced apoptosis and autophagy via destabilization of XIAP in human chondrosarcoma cells. Cell Death Dis. 5, e1571–e1571 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. S. Reumann, K.L. Shogren, M.J. Yaszemski, A. Maran, Inhibition of autophagy increases 2-methoxyestradiol‐induced cytotoxicity in SW1353 chondrosarcoma cells. J. Cell. Biochem. 117, 751–759 (2016)

    Article  CAS  PubMed  Google Scholar 

  66. X. Zhang, Y. Dong, X. Zeng, X. Liang, X. Li, W. Tao, H. Chen, Y. Jiang, L. Mei, S. Feng, The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials 35, 1932–1943 (2014)

    Article  CAS  PubMed  Google Scholar 

  67. X. Zheng, X. Jin, X. Liu, B. Liu, P. Li, F. Ye, T. Zhao, W. Chen, Q. Li, Inhibition of endoplasmic reticulum stress-induced autophagy promotes the killing effect of X-rays on sarcoma in mice. Biochem. Biophys. Res. Commun. 522, 612–617 (2020)

    Article  CAS  PubMed  Google Scholar 

  68. F. Rapino, M. Jung, S. Fulda, BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways. Oncogene 33, 1713–1724 (2014)

    Article  CAS  PubMed  Google Scholar 

  69. M. Peron, P. Bonvini, A. Rosolen, Effect of inhibition of the ubiquitin-proteasome system and Hsp90 on growth and survival of rhabdomyosarcoma cells in vitro. BMC Cancer 12, 1–9 (2012)

    Article  CAS  Google Scholar 

  70. S. Paul, W. Dansithong, M. Gandelman, T. Zu, L.P. Ranum, K.P. Figueroa, D.R. Scoles, S.M. Pulst, Staufen blocks autophagy in neurodegeneration. bioRxiv (2019). https://doi.org/10.1101/659649

    Article  Google Scholar 

  71. R. Sever, J.S. Brugge, Signal transduction in cancer. Cold Spring Harb Perspect. Med. 5, a006098 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. S. Kumari, A.K. Badana, M. Mohan, G.G. Shailendr, R. Malla, Reactive oxygen species: a key constituent in cancer survival. Biomark. Insights 13, 1–9 (2018)

    Article  Google Scholar 

  73. J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, W. Dong, ROS and ROS-mediated cellular signaling. Ox. Med. Cell. Longevity 2016, 4350965 (2016)

    Google Scholar 

  74. Q. Wu, W. Wu, B. Fu, L. Shi, X. Wang, K. Kuca, JNK signaling in cancer cell survival. Med. Res. Rev. 39, 2082–2104 (2019)

    Article  CAS  PubMed  Google Scholar 

  75. H. Wang, T. Zhang, W. Sun, Z. Wang, D. Zuo, Z. Zhou, S. Li, J. Xu, F. Yin, Y. Hua, Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 7, e2247–e2247 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. L. Harhaji, S. Mijatovic, D. Maksimovic-Ivanic, D. Popadic, A. Isakovic, B. Todorovic-Markovic, V. Trajkovic, Aloe emodin inhibits the cytotoxic action of tumor necrosis factor. Eur. J. Pharmacol. 568, 248–259 (2007)

    Article  CAS  PubMed  Google Scholar 

  77. H. Zhou, T. Shen, C. Shang, Y. Luo, L. Liu, J. Yan, Y. Li, S. Huang, Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway. Oncotarget 5, 10140–10150 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  78. T. Tian, X. Li, J. Zhang, mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int. J. Mol. Sci. 20, 755 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  79. F. Conciatori, L. Ciuffreda, C. Bazzichetto, I. Falcone, S. Pilotto, E. Bria, F. Cognetti, M. Milella, mTOR cross-talk in cancer and potential for combination therapy. Cancers 10, 23 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  80. H.N. March, D.J. Winton, mTOR regulation by JNK: rescuing the starving intestinal cancer cell? Gastroenterology 140, 1387–1391 (2011)

  81. A.R. Hinson, R. Jones, L.E. Crose, B. Belyea, F.G. Barr, C.M. Linardic, Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: utility and pitfalls. Front. Oncol. 3, 183 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  82. A. Molchadsky, N. Rivlin, R. Brosh, V. Rotter, R. Sarig, p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 31, 1501–1508 (2010)

    Article  CAS  PubMed  Google Scholar 

  83. S. Chen, G. Lahav, Two is better than one; toward a rational design of combinatorial therapy. Curr. Opin. Struct. Biol. 41, 145–150 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Pantic (University of Padua, Italy) for providing HSMM-C2 and HSMM-C3 cell lines. This work was supported by grants from the Cancer Research Society (CRS).

Funding

This study was supported by grants from the Cancer Research Society (CRS).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Shekoufeh Almasi. The first draft of the manuscript was written by Shekoufeh Almasi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bernard J. Jasmin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests. 

Ethics approval

All animal experimental protocols were approved by the University of Ottawa Institutional Animal Care Committee and were in accordance with the Canadian Council of Animal Care guidelines.

Consent to participate

Not applicable. 

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 7.06 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almasi, S., Crawford Parks, T.E., Ravel-Chapuis, A. et al. Differential regulation of autophagy by STAU1 in alveolar rhabdomyosarcoma and non‐transformed skeletal muscle cells. Cell Oncol. 44, 851–870 (2021). https://doi.org/10.1007/s13402-021-00607-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00607-y

Keywords

Navigation