Skip to main content

Advertisement

Log in

Circular RNA circNFATC3 acts as a miR-9-5p sponge to promote cervical cancer development by upregulating SDC2

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Circular RNAs (circRNAs) constitute a class of regulatory RNAs that are thought to play important roles in tumor initiation and progression. Several studies have reported that circRNAs may be involved in various biological processes via networks of competing endogenous RNAs (ceRNAs). However, the regulatory roles and underlying mechanisms of circRNAs in cervical cancer (CC) still largely remain to be resolved.

Methods

CircNFATC3 (hsa_circ_0005615) expression was assessed in CC cell lines (SiHa, H8) using circRNA microarray analysis, whereas qRT-PCR was used to detect circNFATC3 and miR-9-5p expression in primary human CC tissues and cell lines. The tumor promoting role of circNFATC3 was verified in CC cells using a series of functional assays, and interactions between circNFATC3, miR-9-5p and syndecan-2 (SDC2) were investigated using dual-luciferase reporter assays. SDC2 protein expression was detected using Western blotting and immunohistochemistry. The tumor promoting role of circNFATC3 was confirmed in vivo using a CC xenograft model.

Results

We found that circNFATC3 expression was upregulated in primary CC tissues and positively correlated with CC tumor size and stromal invasion. In addition, we found that exogenous circNFATC3 overexpression enhanced the proliferation, migration and invasion of HeLa cells, while its knockdown reduced the malignancy of SiHa cells. We also found that circNFATC3 may act directly as a miR-9-5p sponge to regulate SDC2 expression and its downstream signaling pathways, thereby enhancing CC development.

Conclusion

Our data indicate that circNFATC3 sponges miR-9-5p to regulate SDC2 expression and, thereby, to promote CC tumor development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CC:

cervical cancer

ceRNA:

competing endogenous RNA

LACC:

locally advanced cervical cancer

FIGO:

International Federation of Gynecology and Obstetrics

MEM:

minimum Eagle’s medium.

DMEM:

Dulbecco’s modified Eagle’s medium.

qRT-PCR:

quantitative reverse transcription-polymerase chain reaction.

OE:

overexpression.

SDC2:

syndecan-2.

siRNA:

short interfering RNA.

miRNA:

microRNA.

References

  1. P.A. Cohen, A. Jhingran, A. Oaknin, L. Denny, Cervical cancer. Lancet 393, 169–182 (2019)

  2. E.J. Crosbie, M.H. Einstein, S. Franceschi, H.C. Kitchener, Human papillomavirus and cervical cancer. Lancet 382, 889–899 (2013)

  3. L. Chen, K. Liao, C. Chen, P. Li, W. Wang, A. Lu, Q. Zhu, E. Dai, D. Li, B. Ling, P. Liu, J. Lang, Investigation and analysis of the treatment status of locally advanced cervical cancer in some parts of mainland China. Chinese Journal of Practical Gynecology and Obstetrics 34, 1247–1252 (2018)

    Google Scholar 

  4. S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S.D. Mackowiak, L.H. Gregersen, M. Munschauer, A. Loewer, U. Ziebold, M. Landthaler, C. Kocks, F. le Noble, N. Rajewsky, Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013)

  5. Y. Zhong, Y. Du, X. Yang, Y. Mo, C. Fan, F. Xiong, D. Ren, X. Ye, C. Li, Y. Wang, F. Wei, C. Guo, X. Wu, X. Li, Y. Li, G. Li, Z. Zeng, W. Xiong, Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 17, 79 (2018)

    Article  Google Scholar 

  6. F. Zheng, M. Wang, Y. Li, C. Huang, D. Tao, F. Xie, H. Zhang, J. Sun, C. Zhang, C. Gu, Z. Wang, G. Jiang, CircNR3C1 inhibits proliferation of bladder cancer cells by sponging miR-27a-3p and downregulating cyclin D1 expression. Cancer Lett 460, 139–151 (2019)

    Article  CAS  Google Scholar 

  7. J. Lu, Y.H. Wang, C. Yoon, X.Y. Huang, Y. Xu, J.W. Xie, J.B. Wang, J.X. Lin, Q.Y. Chen, L.L. Cao, C.H. Zheng, P. Li, C.M. Huang, Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett 471, 38–48 (2019)

    Article  Google Scholar 

  8. S. Meng, H. Zhou, Z. Feng, Z. Xu, Y. Tang, P. Li, M. Wu, CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol Cancer 16, 94 (2017)

    Article  Google Scholar 

  9. Q. Zheng, C. Bao, W. Guo, S. Li, J. Chen, B. Chen, Y. Luo, D. Lyu, Y. Li, G. Shi, L. Liang, J. Gu, X. He, S. Huang, Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7, 11215 (2016)

    Article  CAS  Google Scholar 

  10. L.S. Kristensen, T.B. Hansen, M.T. Venø, J. Kjems, Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene 37, 555–565 (2018)

  11. P. Glažar, P. Papavasileiou, N. Rajewsky, circBase: a database for circular RNAs. RNA 20, 1666–1670 (2014)

    Article  Google Scholar 

  12. S. Chaichian, R. Shafabakhsh, S.M. Mirhashemi, B. Moazzami, Z. Asemi, Circular RNAs: A novel biomarker for cervical cancer. J Cell Physiol 235, 718–724 (2020)

    Article  CAS  Google Scholar 

  13. Q. Tang, Z. Chen, L. Zhao, H. Xu, Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging 11, 9982–9999 (2019)

  14. D.P. Bartel, MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

  15. R. Garzon, G. Marcucci, C.M. Croce, Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat Rev Drug Discov 9, 775–789 (2010)

    Article  CAS  Google Scholar 

  16. M. Coolen, S. Katz, L. Bally-Cuif, miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 7, 220 (2013)

  17. M. Wang, Q. Gao, Y. Chen, Z. Li, L. Yue, Y. Cao, PAK4, a target of miR-9-5p, promotes cell proliferation and inhibits apoptosis in colorectal cancer. Cell Mol Biol Lett 24, 58 (2019)

    Article  Google Scholar 

  18. Y. Fan, Y. Shi, Z. Lin, X. Huang, J. Li, W. Huang, D. Shen, G. Zhuang, W. Liu, miR-9-5p suppresses malignant biological behaviors of human gastric cancer cells by negative regulation of TNFAIP8L3. Dig Dis Sci 64, 2823–2829 (2019)

  19. J. Wang, B. Wang, H. Ren, W. Chen, miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1. Biochem Biophys Res Commun 509, 241–248 (2019)

  20. G. Li, F. Wu, H. Yang, X. Deng, Y. Yuan, MiR-9-5p promotes cell growth and metastasis in non-small cell lung cancer through the repression of TGFBR2. Biomed Pharmacother 96, 1170–1178 (2017)

    Article  CAS  Google Scholar 

  21. H. Lee, Y. Kim, Y. Choi, S. Choi, E. Hong, E.S. Oh, Syndecan-2 cytoplasmic domain regulates colon cancer cell migration via interaction with syntenin-1. Biochem Biophys Res Commun 409, 148–153 (2011)

    Article  CAS  Google Scholar 

  22. K. Tsoyi, J.C. Osorio, S.G. Chu, I.E. Fernandez, S.P. De Frias, L. Sholl, Y. Cui, C.S. Tellez, J.M. Siegfried, S.A. Belinsky, M.A. Perrella, S. El-Chemaly, I.O. Rosas, Lung adenocarcinoma syndecan-2 potentiates cell invasiveness. Am J Respir Cell Mol Biol 60, 659–666 (2019)

  23. T. De Oliveira, I. Abiatari, S. Raulefs, D. Sauliunaite, M. Erkan, B. Kong, H. Friess, C.W. Michalski, J. Kleeff, Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype. Mol Cancer 11, 19 (2012)

    Article  Google Scholar 

  24. A. Jacob, R. Prekeris, The regulation of MMP targeting to invadopodia during cancer metastasis. Front Cell Dev Biol 3, 4 (2015)

    Article  Google Scholar 

  25. D.J. Carey, Syndecans: multifunctional cell-surface co-receptors. Biochem J. 327 ( Pt 1), (1997)

  26. J.J. Grootjans, P. Zimmermann, G. Reekmans, A. Smets, G. Degeest, J. Dürr, G. David, Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad Sci U S A 94, 13683–13688 (1997)

    Article  CAS  Google Scholar 

  27. Y. Choi, H. Kim, H. Chung, J.S. Hwang, J.A. Shin, I.O. Han, E.S. Oh, Syndecan-2 regulates cell migration in colon cancer cells through Tiam1-mediated Rac activation. Biochem Biophys Res Commun 391, 921–925 (2010)

    Article  CAS  Google Scholar 

  28. Y. Xia, S. Shen, I.M. Verma, NF-κB, an active player in human cancers. Cancer Immunol Res 2, 823–830 (2014)

    Article  CAS  Google Scholar 

  29. S. Tilborghs, J. Corthouts, Y. Verhoeven, D. Arias, C. Rolfo, X.B. Trinh, P.A. van Dam, The role of nuclear factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 120, 141–150 (2017)

    Article  Google Scholar 

  30. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011)

  31. M. Qiu, W. Xia, R. Chen, S. Wang, Y. Xu, Z. Ma, W. Xu, E. Zhang, J. Wang, T. Fang, J. Hu, G. Dong, R. Yin, J. Wang, L. Xu, The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Cancer Res 78, 2839–2851 (2018)

    Article  CAS  Google Scholar 

  32. J. Zhang, H. Liu, L. Hou, G. Wang, R. Zhang, Y. Huang, X. Chen, J. Zhu, Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer 16, 151 (2017)

    Article  Google Scholar 

  33. Z.H. Zong, Y.P. Du, X. Guan, S. Chen, Y. Zhao, CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer Res 38, 437 (2019)

    Article  Google Scholar 

  34. H.B. Ma, Y.N. Yao, J.J. Yu, X.X. Chen, H.F. Li, Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506. Am J Transl Res 10, 592–604 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. L.T. Maria, F. Raffaella, B. Luigi, A. Clorinda, S. Noemy, C. Andrea, P. Francesca, L.T. Anna, M.B. Franco, The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical Cance. Front Oncol 10, 150 (2020)

    Article  Google Scholar 

  36. L.S. Kristensen, M.S. Andersen, L.V.W. Stagsted, K.K. Ebbesen, T.B. Hansen, J. Kjems, The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20, 675–691 (2019)

    Article  CAS  Google Scholar 

  37. S.M. Wilting, P.J.F. Snijders, W. Verlaat, A. Jaspers, M.A. van de Wiel, W.N. van Wieringen, G.A. Meijer, G.G. Kenter, Y. Yi, C. le Sage, R. Agami, C.J.L.M. Meijer, R.D.M. Steenbergen, Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 32, 106–116 (2013)

  38. Z.-M. Zheng, X. Wang, Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta 1809, 668–677 (2011)

    Article  CAS  Google Scholar 

  39. Q. Xie, S. Lin, M. Zheng, Q. Cai, Y. Tu, Long noncoding RNA NEAT1 promotes the growth of cervical cancer cells via sponging miR-9-5p. Biochem Cell Biol 97, 100–108 (2019)

    Article  CAS  Google Scholar 

  40. A. Aishanjiang, N. Rouzi, Z. Jiao, L. Wang, K. Wusainahong, N. Wumanjiang, M. Musha, M. Niyazi, MicroRNA-9 enhances invasion and migration of cervical carcinomas by directly targeting FOXO1. Eur Rev Med Pharmacol Sci 22, 2253–2260 (2018)

    CAS  PubMed  Google Scholar 

  41. I. Babion, A. Jaspers, A.P. van Splunter, I.A.E. van der Hoorn, S.M. Wilting, R.D.M. Steenbergen, miR-9-5p exerts a dual role in cervical cancer and targets transcription factor TWIST1. Cells 9, 65 (2019)

  42. W. Liu, G. Gao, X. Hu, Y. Wang, J.K. Schwarz, J.J. Chen, P.W. Grigsby, X. Wang, Activation of miR-9 by human papillomavirus in cervical cancer. Oncotarget 5, 11620–11630 (2014)

Download references

Availability of data and materials

The datasets used and/or analyzed during this study are available from the corresponding author upon reasonable request.

Funding

This work was supported by the Free Researcher Project of Shengjing Hospital (grant no. 201302).

Author information

Authors and Affiliations

Authors

Contributions

SLZ designed the study; NYM conducted the experiments and wrote the paper; HW, XHL and WH performed part of the experiments and analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shulan Zhang.

Ethics declarations

Competing interests

The authors have declared that no competing interests exist

Ethical approval and consent to participate

This study (including animal studies) was approved by the Ethics Committee of Shengjing Hospital of China Medical University and was conducted in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 25425 kb)

ESM 2

(PDF 205 kb)

ESM 3

(PDF 831 kb)

ESM 4

(PDF 441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N., Li, X., Wei, H. et al. Circular RNA circNFATC3 acts as a miR-9-5p sponge to promote cervical cancer development by upregulating SDC2. Cell Oncol. 44, 93–107 (2021). https://doi.org/10.1007/s13402-020-00555-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00555-z

Keywords

Navigation