Skip to main content

Advertisement

Log in

Recombinant cell-permeable HOXA9 protein inhibits NSCLC cell migration and invasion

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Previously, it has been reported that homeobox A9 (HOXA9) protein expression is downregulated in lung cancer cells, and that its expression is inversely correlated with the metastatic potential of lung cancer cells both in vitro and in vivo. As such, HOXA9 shows therapeutic potential. The development of therapeutic strategies based on this protein is, however, limited due to its poor membrane permeability. To overcome this problem, we developed a system to deliver HOXA9 protein into non-small cell lung cancer (NSCLC) cells.

Methods

First, we constructed a delivery vector expressing polyarginine, a cell-penetrating peptide, as well as HOXA9. The resulting recombinant R10-HOXA9 protein was effectively introduced into A549 and NCI-H1299 NSCLC cells. Next, we examined the roles and molecular mechanisms of recombinant R10-HOXA9 in processes involved in tumor progression. To investigate the therapeutic efficacy of the delivery system, we performed cell motility assays using both in vitro and in vivo experimental models.

Results

We found that recombinant R10-HOXA9 protein reduced the invasion and migration rate, but not the proliferation rate, of the NSCLC cells tested, both in vitro and in vivo. Treatment of NSCLC cells with recombinant R10-HOXA9 protein led to a significant increase in E-cadherin expression. Conversely, we found that the expression of snail family zinc finger 2 (SLUG), a transcriptional repressor of E-cadherin, was markedly decreased. In an experimental metastatic mouse model, recombinant R10-HOXA9 protein was found to effectively reduce the rate of lung cancer cell motility.

Conclusions

Our data suggest that the developed cell-permeable R10-HOXA9 system may serve as a useful tool to prevent NSCLC cell migration and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. U. Thorsteinsdottir, A. Mamo, E. Kroon, L. Jerome, J. Bijl, H.J. Lawrence, K. Humphries, G. Sauvageau, Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99, 121–129 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. M. Pojo, C.S. Goncalves, A. Xavier-Magalhaes, A.I. Oliveira, T. Goncalves, S. Correia, A.J. Rodrigues, S. Costa, L. Pinto, A.A. Pinto, J.M. Lopes, R.M. Reis, M. Rocha, N. Sousa, B.M. Costa, A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget 6, 7657–7674 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  3. S.Y. Ko, A. Ladanyi, E. Lengyel, H. Naora, Expression of the homeobox gene HOXA9 in ovarian cancer induces peritoneal macrophages to acquire an M2 tumor-promoting phenotype. Am. J. Pathol. 184, 271–281 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. P.M. Gilbert, J.K. Mouw, M.A. Unger, J.N. Lakins, M.K. Gbegnon, V.B. Clemmer, M. Benezra, J.D. Licht, N.J. Boudreau, K.K. Tsai, A.L. Welm, M.D. Feldman, B.L. Weber, V.M. Weaver, HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype. J. Clin. Invest. 120, 1535–1550 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. L. Alvarado-Ruiz, M.G. Martinez-Silva, L.A. Torres-Reyes, P. Pina-Sanchez, P. Ortiz-Lazareno, A. Bravo-Cuellar, A. Aguilar-Lemarroy, L.F. Jave-Suarez, HOXA9 is underexpressed in cervical cancer cells and its restoration decreases proliferation, migration and expression of epithelial-to-mesenchymal transition genes. Asian Pac. J. Cancer Prev. 17, 1037–1047 (2016)

    Article  PubMed  Google Scholar 

  6. F. Li, L. Dong, X. Qu, K. Li, H. Wang, L. Cheng, H. He, L. Wang, Z. Qi, H. Ren, S. Jin, Down-expression of homeobox A9 promotes cancer cell invasion in human hepatocellular carcinomas. Int. J. Clin. Exp. Pathol. 9, 563–575 (2016)

    CAS  Google Scholar 

  7. J.A. Hwang, B.B. Lee, Y. Kim, S.H. Hong, Y.H. Kim, J. Han, Y.M. Shim, C.Y. Yoon, Y.S. Lee, D.H. Kim, HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer. Mol. Carcinog. 54, E72–E80 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. J.W. Son, K.J. Jeong, W.S. Jean, S.Y. Park, S. Jheon, H.M. Cho, C.G. Park, H.Y. Lee, J. Kang, Genome-wide combination profiling of DNA copy number and methylation for deciphering biomarkers in non-small cell lung cancer patients. Cancer Lett. 311, 29–37 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. S.H. Hwang, K.U. Kim, J.E. Kim, H.H. Kim, M.K. Lee, C.H. Lee, S.Y. Lee, T. Oh, S. An, Detection of HOXA9 gene methylation in tumor tissues and induced sputum samples from primary lung cancer patients. Clin. Chem. Lab. Med. 49, 699–704 (2011)

    CAS  PubMed  Google Scholar 

  10. S.L. Yu, D.C. Lee, H.A. Sohn, S.Y. Lee, H.S. Jeon, J.H. Lee, C.G. Park, H.Y. Lee, Y.I. Yeom, J.W. Son, Y.S. Yoon, J. Kang, Homeobox A9 directly targeted by miR-196b regulates aggressiveness through nuclear factor-kappa B activity in non-small cell lung cancer cells. Mol. Carcinog. 55, 1915–1926 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. V. Gopal, Bioinspired peptides as versatile nucleic acid delivery platforms. J. Control. Release 167, 323–332 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. H.J. Kim, M.H. Kim, J.T. Kim, W.J. Lee, E. Kim, K.S. Lim, J.K. Kim, Y.I. Yang, K.D. Park, Y.H. Kim, Intracellular transduction of TAT-Hsp27 fusion protein enhancing cell survival and regeneration capacity of cardiac stem cells in acute myocardial infarction. J. Control. Release 215, 55–72 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. H. He, L. Sun, J. Ye, E. Liu, S. Chen, Q. Liang, M.C. Shin, V.C. Yang, Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J. Control. Release 240, 67–76 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. T. Skotland, T.G. Iversen, M.L. Torgersen, K. Sandvig, Cell-penetrating peptides: possibilities and challenges for drug delivery in vitro and in vivo. Molecules 20, 13313–13323 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D.A. Mann, A.D. Frankel, Endocytosis and targeting of exogenous HIV-1 tat protein. EMBO J. 10, 1733–1739 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P.A. Wender, D.J. Mitchell, K. Pattabiraman, E.T. Pelkey, L. Steinman, J.B. Rothbard, The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A. 97, 13003–13008 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Bolhassani, B.S. Jafarzade, G. Mardani, In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides 87, 50–63 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  CAS  Google Scholar 

  19. J.H. Cho, Y.M. You, Y. Il Yeom, D.C. Lee, B.K. Kim, M. Won, B.C. Cho, M. Kang, S. Park, S.J. Yang, J.S. Kim, J.A. Kim, K.C. Park, RNF25 promotes gefitinib resistance in EGFR-mutant NSCLC cells by inducing NF-kappaB-mediated ERK reactivation. Cell Death Dis. 9, 587 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Xia, S. Shen, I.M. Verma, NF-kappaB, an active player in human cancers. Cancer Immunol. Res. 2, 823–830 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Guidotti, L. Brambilla, D. Rossi, Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38, 406–424 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. D.J. Mitchell, D.T. Kim, L. Steinman, C.G. Fathman, J.B. Rothbard, Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 56, 318–325 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. G. Tunnemann, G. Ter-Avetisyan, R.M. Martin, M. Stockl, A. Herrmann, M.C. Cardoso, Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J. Pept. Sci. 14, 469–476 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. J.T. Hsieh, J. Zhou, C. Gore, P. Zimmern, R11, a novel cell-permeable peptide, as an intravesical delivery vehicle. BJU Int. 108, 1666–1671 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. T. Zhang, K. Wu, C. Ding, K. Sun, Z. Guan, X. Wang, J.T. Hsieh, D. He, J. Fan, Inhibiting bladder tumor growth with a cell penetrating R11 peptide derived from the p53 C-terminus. Oncotarget 6, 37782–37791 (2015)

    PubMed  PubMed Central  Google Scholar 

  26. W. Wang, N. Zhang, T. Zhao, M. Liu, T. Zhang, D. Li, Inhibition of tumor growth by polyarginine-fused mutant cytosine deaminase. Appl. Biochem. Biotechnol. 175, 1633–1643 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Du, L. Wang, W. Wang, T. Guo, M. Zhang, P. Zhang, Y. Zhang, K. Wu, A. Li, X. Wang, J. He, J. Fan, Novel application of cell penetrating R11 peptide for diagnosis of bladder cancer. J. Biomed. Nanotechnol. 14, 161–167 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell. Oncol. 40, 419–441 (2017)

    Article  CAS  Google Scholar 

  29. Q. Zhang, Y. Zhang, K. Li, H. Wang, H. Li, J. Zheng, A novel strategy to improve the therapeutic efficacy of gemcitabine for non-small cell lung cancer by the tumor-penetrating peptide Irgd. PLoS One 10, e0129865 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y. Zhang, J. Yang, M. Ding, L. Li, Z. Lu, Q. Zhang, J. Zheng, Tumor-penetration and antitumor efficacy of cetuximab are enhanced by co-administered iRGD in a murine model of human NSCLC. Oncol. Lett. 12, 3241–3249 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Z. Duan, C. Chen, J. Qin, Q. Liu, Q. Wang, X. Xu, J. Wang, Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv. 24, 752–764 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. N. Mohammad, P. Malvi, A.S. Meena, S.V. Singh, B. Chaube, G. Vannuruswamy, M.J. Kulkarni, M.K. Bhat, Cholesterol depletion by methyl-beta-cyclodextrin augments tamoxifen induced cell death by enhancing its uptake in melanoma. Mol. Cancer 13, 204 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. N. Mohammad, S.V. Singh, P. Malvi, B. Chaube, D. Athavale, M. Vanuopadath, S.S. Nair, B. Nair, M.K. Bhat, Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-beta-cyclodextrin: Involvement of p53 and Fas receptor ligand complex. Sci. Rep. 5, 11853 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Research Foundation of Korea (NRF-2017R1A2B4003684) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A1A03015713).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Chul Lee or Jaeku Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures involving animal experiments were approved by the Animal Research Ethics Committee of the Korea Research Institute of Bioscience and Biotechnology.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

Generation of recombinant cell-permeable R10-HOXA9 protein. (a) Construction of the HOXA9 open reading frame or the fusion of ten arginine residues (R10) and the HOXA9 open reading frame using EcoRI and NotI sites in the pET-41a(+) vector. (b) DNA gel electrophoresis after the NotI and EcoRI digestion of subclones. (c) Identification of recombinant C-HOXA9 and R10-HOXA9 expression by IPTG induction using Coomassie blue-stained SDS-PAGE. (d) Recombinant C-HOXA9 and R10-HOXA9 protein were purified using Ni-NTA beads. The purified proteins were identified by Coomassie blue staining (left panel) and immunoblotting using an anti-HOXA9 antibody (right panel). (DOCX 13 kb)

ESM 2

(PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, SL., Koo, H., Lee, H.Y. et al. Recombinant cell-permeable HOXA9 protein inhibits NSCLC cell migration and invasion. Cell Oncol. 42, 275–285 (2019). https://doi.org/10.1007/s13402-019-00424-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-019-00424-4

Keywords

Navigation