Skip to main content

Advertisement

Log in

Collective cell migration of thyroid carcinoma cells: a beneficial ability to override unfavourable substrates

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Tumor cell invasion and metastasis are life threatening events. Invasive tumor cells tend to migrate as collective sheets. In the present in vitro study we aimed to (i) assess whether collective tumor cells gain benefits in their migratory potential compared to single cells and (ii) to identify its putative underlying molecular mechanisms.

Methods

The migratory potential of single and collective carcinoma cells was assessed using video time lapse microscopy and cell migration assays in the absence and presence of seven potential gap junction inhibitors or the Rac1 inhibitor Z62954982. The perturbation of gap junctions was assessed using a dye diffusion assay. In addition, LDH-based cytotoxicity and RT-PCR-based expression analyses were performed.

Results

Whereas single breast, cervix and thyroid carcinoma cells were virtually immobile on unfavourable plastic surfaces, we found that they gained pronounced migratory capacities as collectives under comparable conditions. Thyroid carcinoma cells, that were studied in more detail, were found to express specific subsets of connexins and to form active gap junctions as revealed by dye diffusion analysis. Although all potential gap junction blockers suppressed intercellular dye diffusion in at least one of the cell lines tested, only two of them were found to inhibit collective cell migration and none of them to inhibit single cell migration. In the presence of the Rac1 inhibitor Z62954982 collective migration, but not single cell migration, was found to be reduced up to 20 %.

Conclusions

Our data indicate that collective migration enables tumor cells to cross otherwise unfavourable substrate areas. This capacity seems to be independent of intercellular communication via gap junctions, whereas Rac1-dependent intracellular signalling seems to be essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Paduch, The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol 39, 397–410 (2016)

    Article  CAS  Google Scholar 

  2. J. Odenthal, R. Takes, P. Friedl, Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis (2016). doi:10.1093/carcin/bgw098

    PubMed  Google Scholar 

  3. M. Canel, A. Serrels, M. C. Frame, V. G. Brunton, E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126, 393–401 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. V. Saisongkorh, A. Maiuthed, P. Chanvorachote, Nitric oxide increases the migratory activity of non-small cell lung cancer cells via AKT-mediated integrin αv and β1 upregulation. Cell Oncol 39, 449–462 (2016)

    Article  CAS  Google Scholar 

  5. P. Friedl, K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3, 362–374 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. M. Yilmaz, G. Christofori, Mechanisms of motility in metastasizing cells. Mol Cancer Res 8, 629–642 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. K. J. Cheung, A. J. Ewald, A collective route to metastasis: seeding by tumor cell clusters. Science 352, 167–169 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. A. Haeger, K. Wolf, M. M. Zegers, P. Friedl, Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25, 556–566 (2015)

    Article  PubMed  Google Scholar 

  9. M. Kotini, R. Mayor, Connexins in migration during development and cancer. Dev Biol 401, 143–151 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. V. Su, A. F. Lau, Connexins: mechanisms regulating protein levels and intercellular communication. FEBS Lett 588, 1212–1220 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. G. Söhl, K. Willecke, Gap junctions and the connexin protein family. Cardiovasc Res 62, 228–232 (2004)

    Article  PubMed  Google Scholar 

  12. P. Bedner, C. Steinhäuser, M. Theis, Functional redundancy and compensation among members of gap junction protein families? Biochim Biophys Acta 181, 1971–1984 (2012)

    Article  Google Scholar 

  13. A. A. Khalil, P. Friedl, Determinants of leader cells in collective cell migration. Integr Biol (Camb) 2, 568–574 (2010)

    Article  Google Scholar 

  14. N. Yamaguchi, T. Mizutani, K. Kawabata, H. Haga, Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci Rep 5, 7656 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. M. Parri, P. Chiarugi, Rac and rho GTPases in cancer cell motility control. Cell Commun Signal 8, 23 (2008). doi:10.1186/1478-811X-8-23

    Article  Google Scholar 

  16. A. J. Ridley, Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36, 103–112 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. M. Zegers, P. Friedl, Rho GTPases in collective cell migration. Small GTPases 5, e28997 (2014). doi:10.4161/sgtp.28997

    Article  PubMed  PubMed Central  Google Scholar 

  18. L. Delys, V. Detours, B. Franc, G. Thomas, T. Bogdanova, M. Tronko, F. Libert, J. E. Dumont, C. Maenhaut, Gene expression and the biological phenotype of papillary thyroid carcinoma. Oncogene 26, 7894–7893 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. A. Glassmann, J. Winter, D. Kraus, N. Veit, R. Probstmeier, Pharmacological suppression of the Ras/MAPK pathway in thyroid carcinoma cells can provoke opposite effects on cell migration and proliferation: the appearance of yin-yang effects and the need of combinatorial treatments. Int J Oncol 45, 2587–2595 (2014)

    CAS  PubMed  Google Scholar 

  20. D. Hecker, J. Kappler, A. Glassmann, K. Schilling, W. Alt, Image analysis of time-lapse movies - a precision control guided approach to correct motion artefacts. J Neurosci Methods 172, 67–73 (2008)

    Article  PubMed  Google Scholar 

  21. A. Glassmann, K. Reichmann, B. Scheffler, M. Glas, N. Veit, R. Probstmeier, Pharmacological targeting of the constitutively activated MEK/MAPK-dependent signaling pathway in glioma cells inhibits cell proliferation and migration. Int J Oncol 39, 1567–1575 (2011)

    CAS  PubMed  Google Scholar 

  22. M. Koval, S. A. Molina, J. M. Burt, Mix and match: investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett 588, 1193–1204 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. G. R. Juszczak, A. H. Swiergiel, Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuro-Psychopharmacol Biol Psychiatry 3, 181–198 (2009)

    Article  Google Scholar 

  24. G. Orend, R. Chiquet-Ehrismann, Adhesion modulation by antiadhesive molecules of the extracellular matrix. Exp Cell Res 261, 104–110 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. T. N. Wight, Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14, 617–623 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. B. W. Kiernan, B. Götz, A. Faissner, C. ffrench-Constant, Tenascin-C inhibits oligodendrocyte precursor cell migration by both adhesion-dependent and adhesion-independent mechanisms. Mol Cell Neurosci 7, 322–335 (1996)

    Article  CAS  PubMed  Google Scholar 

  27. M. P. Burnham, P. M. Sharpe, C. Garner, R. Hughes, C. E. Pollard, J. Bowes, Investigation of connexin 43 uncoupling and prolongation of the cardiac QRS complex in preclinical and marketed drugs. Br J Pharmacol 171, 4808–4819 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K. Jensen, A. Patel, J. Klubo-Gwiezdzinska, A. Bauer, V. Vasko, Inhibition of gap junction transfer sensitizes thyroid cancer cells to anoikis. Endocr Relat Cancer 18, 613–626 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. Q. Aftab, W. C. Sin, C. C. Naus, Reduction in gap junction intercellular communication promotes glioma migration. Oncotarget 6, 11447–11464 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  30. R. Oliveira, C. Christov, J. S. Guillamo, S. de Boüard, S. Palfi, L. Venance, M. Tardy, M. Peschanski, Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol 6, 7 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  31. L. Li, R. Hartley, B. Reiss, Y. Sun, J. Pu, D. Wu, F. Lin, T. Hoang, S. Yamada, J. Jiang, M. Zhao, E-cadherin plays an essential role in collective directional migration of large epithelial sheets. Cell Mol Life Sci 69, 2779–2789 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O. Ramos Gde, L. Bernardi, I. Lauxen, M. Sant’Ana Filho, A. R. Horwitz, M. L. Lamers, Fibronectin modulates cell adhesion and signaling to promote single cell migration of highly invasive oral squamous cell carcinoma. PLoS One 11, e0151338 (2016). doi:10.1371/journal.pone.0151338

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Deutsche Forschungsgemeinschaft (STE 552/4, STE 552/5; to C.S.) and EU EraNet NEURON (Project BrIE; to C.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Probstmeier.

Ethics declarations

Conflict of interest

None declared.

Additional information

Liudmila Lobastova and Dominik Kraus have contributed equal amount of work.

Electronic Supplementary Material

Movie 1

Single cell migration of B-CPAP cells on untreated cell culture plastic. (MOV 511 kb)

Movie 2

Single cell migration of FTC-133 cells on a fibronectin-covered surface. (MOV 661 kb)

Movie 3

Single cell migration of FTC-133 cells on a laminin-covered surface. (MOV 583 kb)

Movie 4

Collective cell migration: Typical migration pattern of a FTC-133 cell sheet. (MOV 2619 kb)

Movie 5

Collective cell migration: Integration of an isolated FTC-133 cell into a migrating cell sheet. (MOV 1934 kb)

Movie 6

Collective cell migration: Emigration of a single B-CPAP cell out of a migrating cell sheet. (MOV 2069 kb)

Movie 7

Collective cell migration: Mobility potential of B-CPAP cell aggregates. (MOV 703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobastova, L., Kraus, D., Glassmann, A. et al. Collective cell migration of thyroid carcinoma cells: a beneficial ability to override unfavourable substrates. Cell Oncol. 40, 63–76 (2017). https://doi.org/10.1007/s13402-016-0305-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0305-5

Keywords

Navigation