Skip to main content
Log in

Inactivation of CYLD in intestinal epithelial cells exacerbates colitis-associated colorectal carcinogenesis - a short report

  • Short Communication
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

CYLD is a tumor suppressor that has been linked to the development of various human malignancies, including colon cancer. The tumor-suppressing function of CYLD is associated with its deubiquitinating activity, which maps to the carboxyl-terminal region of the protein. In the present study we evaluated the role of intestinal epithelial CYLD in colitis-associated cancer using a conditional mouse CYLD inactivation model.

Methods

In order to evaluate the role of CYLD in intestinal epithelial carcinogenesis, mice (IEC-Cyld Δ9 mice) that carry a mutation that eliminates the deubiquitinating domain of CYLD in intestinal epithelial cells (IEC) were generated by crossing Villin-Cre transgenic mice to previously generated mice carrying a loxP-flanked Cyld exon 9 (Cyld flx9 mice).

Results

We found that IEC-Cyld Δ9 mice did not present spontaneous intestinal abnormalities up to one year of age. However, upon challenge with a combination of genotoxic (AOM) and pro-inflammatory (DSS) agents we found that the number of adenomas in the IEC-Cyld Δ9 mice was dramatically increased compared to the control mice. Inactivation of CYLD in intestinal epithelial cells did not affect the classical nuclear factor-kappaB (NF-κB) and c-Jun kinase (JNK) activation pathways under physiological conditions, suggesting that these pathways do not predispose CYLD-deficient intestinal epithelia to colorectal cancer development before the onset of genotoxic and/or pro-inflammatory stress.

Conclusions

Our findings underscore a critical tumor-suppressing role for functional intestinal epithelial CYLD in colitis-associated carcinogenesis. CYLD expression and its associated pathways in intestinal tumors may be exploited for future prognostic and therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. G. R. Bignell, W. Warren, S. Seal, M. Takahashi, E. Rapley, R. Barfoot, H. Green, C. Brown, P. J. Biggs, S. R. Lakhani, C. Jones, J. Hansen, E. Blair, B. Hofmann, R. Siebert, G. Turner, D. G. Evans, C. Schrander-Stumpel, F. A. Beemer, A. van Den Ouweland, D. Halley, B. Delpech, M. G. Cleveland, I. Leigh, J. Leisti, S. Rasmussen, Identification of the familial cylindromatosis tumour-suppressor gene. Nat. Genet. 25, 160–165 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. J. J. Keats, R. Fonseca, M. Chesi, R. Schop, A. Baker, W. J. Chng, S. Van Wier, R. Tiedemann, C. X. Shi, M. Sebag, E. Braggio, T. Henry, Y. X. Zhu, H. Fogle, T. Price-Troska, G. Ahmann, C. Mancini, L. A. Brents, S. Kumar, P. Greipp, A. Dispenzieri, B. Bryant, G. Mulligan, L. Bruhn, M. Barrett, R. Valdez, J. Trent, A. K. Stewart, J. Carpten, P. L. Bergsagel, Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C. M. Annunziata, R. E. Davis, Y. Demchenko, W. Bellamy, A. Gabrea, F. Zhan, G. Lenz, I. Hanamura, G. Wright, W. Xiao, S. Dave, E. M. Hurt, B. Tan, H. Zhao, O. Stephens, M. Santra, D. R. Williams, L. Dang, B. Barlogie, J. D. Shaughnessy Jr., W. M. Kuehl, L. M. Staudt, Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. W. Wu, H. Zhu, Y. Fu, W. Shen, J. Xu, K. Miao, M. Hong, W. Xu, P. Liu, J. Li, Clinical significance of down-regulated cylindromatosis gene in chronic lymphocytic leukemia. Leuk. Lymphoma 55, 588–594 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. R. Massoumi, S. Kuphal, C. Hellerbrand, B. Haas, P. Wild, T. Spruss, A. Pfeifer, R. Fassler, A. K. Bosserhoff, Down-regulation of CYLD expression by snail promotes tumor progression in malignant melanoma. J. Exp. Med. 206, 221–232 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C. Hellerbrand, E. Bumes, F. Bataille, W. Dietmaier, R. Massoumi, A. K. Bosserhoff, Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis 28, 21–27 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. R. Massoumi, Ubiquitin chain cleavage: CYLD at work. Trends Biochem. Sci. 35, 392–399 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. S. C. Sun, CYLD: a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death Differ. 17, 25–34 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. D. M. Moquin, T. McQuade, F. K. Chan, CYLD deubiquitinates RIP1 in the TNFalpha-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 8, e76841 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Tsagaratou, E. Trompouki, S. Grammenoudi, D. L. Kontoyiannis, G. Mosialos, Thymocyte-specific truncation of the deubiquitinating domain of CYLD impairs positive selection in a NF-kappaB essential modulator-dependent manner. J. Immunol. 185, 2032–2043 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. A. Tsagaratou, S. Grammenoudi, G. Mosialos, Differential requirement of IKKbeta for CYLD-dependent representation of thymic and peripheral T cell populations. Eur. J. Immunol. 41, 3054–3062 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. K. Nikolaou, A. Tsagaratou, C. Eftychi, G. Kollias, G. Mosialos, I. Talianidis, Inactivation of the deubiquitinase CYLD in hepatocytes causes apoptosis, inflammation, fibrosis, and Cancer. Cancer Cell 21, 738–750 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. I. Cleynen, E. Vazeille, M. Artieda, H. W. Verspaget, M. Szczypiorska, M. A. Bringer, P. L. Lakatos, F. Seibold, K. Parnell, R. K. Weersma, J. M. Mahachie John, R. Morgan-Walsh, D. Staelens, I. Arijs, G. De Hertogh, S. Muller, A. Tordai, D. W. Hommes, T. Ahmad, C. Wijmenga, S. Pender, P. Rutgeerts, K. Van Steen, D. Lottaz, S. Vermeire, A. Darfeuille-Michaud, Genetic and microbial factors modulating the ubiquitin proteasome system in inflammatory bowel disease. Gut 63, 1265–1274 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. C. M. Costello, N. Mah, R. Hasler, P. Rosenstiel, G. H. Waetzig, A. Hahn, T. Lu, Y. Gurbuz, S. Nikolaus, M. Albrecht, J. Hampe, R. Lucius, G. Kloppel, H. Eickhoff, H. Lehrach, T. Lengauer, S. Schreiber, Dissection of the inflammatory bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med. 2, e199 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  15. J. Zhang, B. Stirling, S. T. Temmerman, C. A. Ma, I. J. Fuss, J. M. Derry, A. Jain, Impaired regulation of NF-kappaB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J. Clin. Invest. 116, 3042–3049 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. E. Trompouki, A. Tsagaratou, S. K. Kosmidis, P. Dolle, J. Qian, D. L. Kontoyiannis, W. V. Cardoso, G. Mosialos, Truncation of the catalytic domain of the cylindromatosis tumor suppressor impairs lung maturation. Neoplasia 11, 469–476 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. E. Karamanavi, K. Angelopoulou, S. Lavrentiadou, A. Tsingotjidou, Z. Abas, I. Taitzoglou, I. Vlemmas, S.E. Erdman and T. Poutahidis. Urokinase-type plasminogen activator deficiency promotes neoplasmatogenesis in the colon of mice. Transl. Oncol. 7, 174–187 e175 (2014)

  18. K. Vazquez-Santillan, J. Melendez-Zajgla, L. Jimenez-Hernandez, G. Martinez-Ruiz, V. Maldonado, NF-kappaB signaling in cancer stem cells: a promising therapeutic target? Cell. Oncol. 38, 327–339 (2015)

    Article  CAS  Google Scholar 

  19. W. Zhou, J. Yuan, Necroptosis in health and diseases. Semin. Cell Dev. Biol. 35, 14–23 (2014)

    Article  PubMed  Google Scholar 

  20. P. S. Welz, A. Wullaert, K. Vlantis, V. Kondylis, V. Fernandez-Majada, M. Ermolaeva, P. Kirsch, A. Sterner-Kock, G. van Loo, M. Pasparakis, FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330–334 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. J. Niu, Y. Shi, K. Iwai, Z. H. Wu, LUBAC regulates NF-kappaB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. Embo J 30, 3741–3753 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. W.L. Yang, G. Jin, C.F. Li, Y.S. Jeong, A. Moten, D. Xu, Z. Feng, W. Chen, Z. Cai, B. Darnay, W. Gu and H.K. Lin. Cycles of ubiquitination and deubiquitination critically regulate growth factor-mediated activation of Akt signaling. Sci. Signal. 6, ra3 (2013)

  23. D. Takiuchi, H. Eguchi, H. Nagano, Y. Iwagami, Y. Tomimaru, H. Wada, K. Kawamoto, S. Kobayashi, S. Marubashi, M. Tanemura, M. Mori, Y. Doki, Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology 13, 517–523 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. J. Terzic, S. Grivennikov, E. Karin and M. Karin. Inflammation and colon cancer. Gastroenterology 138, 2101–2114 e2105 (2010)

  25. R. Massoumi, K. Chmielarska, K. Hennecke, A. Pfeifer, R. Fassler, Cyld inhibits tumor cell proliferation by blocking bcl-3-dependent NF-kappaB signaling. Cell 125, 665–677 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. D. V. Tauriello, A. Haegebarth, I. Kuper, M. J. Edelmann, M. Henraat, M. R. Canninga-van Dijk, B. M. Kessler, H. Clevers, M. M. Maurice, Loss of the tumor suppressor CYLD enhances wnt/beta-catenin signaling through K63-linked ubiquitination of dvl. Mol. Cell 37, 607–619 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. B. Sumithra, U. Saxena, A. B. Das, Alternative splicing within the wnt signaling pathway: role in cancer development. Cell. Oncol. 39, 1–13 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by intramural funding of the School of Biology of Aristotle University of Thessaloniki and by a scholarship of the Hellenic State Scholarships Foundation (to DNK). The authors gratefully acknowledge the support of the Bodossaki Foundation for the acquisition of laboratory equipment that was used for the imaging and the animal husbandry in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mosialos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karatzas, D.N., Xanthopoulos, K., Kotantaki, P. et al. Inactivation of CYLD in intestinal epithelial cells exacerbates colitis-associated colorectal carcinogenesis - a short report. Cell Oncol. 39, 287–293 (2016). https://doi.org/10.1007/s13402-016-0279-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0279-3

Keywords

Navigation