Skip to main content

Advertisement

Log in

Prognostic implications of securin expression and sub-cellular localization in human breast cancer

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Securin belongs to a class of cell cycle regulators that prevent metaphase-to-anaphase transition until sister chromatid separation is complete. Evidence is accumulating that securin has a prognostic impact on a variety of malignancies but, thus far, the role and regulation of securin expression and its sub-cellular localization have not been systematically addressed in breast cancer.

Methods

In total 470 breast cancer specimens with follow-up data for up to 22 years were included. Immunohistochemical staining and immunofluorescence double-staining were performed for securin and its regulating proteins PTTG1IP, CDC20 and BUBR1. Prognostic associations were evaluated between the expression patterns of these proteins and established prognosticators of invasive breast cancer and patient survival.

Results

We found that a high fraction of securin expressing cancer cells predicted an unfavorable clinical outcome of the breast cancer patients (p < 0.001). Also in multivariate analyses, the fraction of securin expressing cancer cells served as an independent prognosticator of a poor survival (p < 0.0001). We also found that the sub-cellular localization of securin exhibited prognostic power, since cytoplasmic securin expression in the cancer cells appeared to be associated with aggressive breast cancer subtypes and high breast cancer-associated mortality rates (p = 0.003). Through immunofluorescence double-staining, we found that PTTG1IP, CDC20 and BUBR1 exhibited distinct patterns of co-expression with securin, suggesting a regulatory role in the metaphase-to-anaphase transition in human breast cancer cells. We also noted that a subgroup of triple-negative breast carcinomas exhibited deviant expression patterns for the proteins studied.

Conclusions

Our data indicate that securin expression may serve as a strong and independent prognosticator of breast cancer outcome and that a cytoplasmic localization of the protein may provide additional prognostic information, particularly in the biologically and clinically challenging subgroup of triple-negative breast carcinomas. The sub-cellular localization of securin appears to reflect the expression of PTTG1IP, CDC20 and BUBR1, which may participate in the regulation of securin activity and, ultimately, in the survival of breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Salehi, K. Kovacs, B.W. Scheithauer, R.V. Lloyd, M. Cusimano, Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr. Relat. Cancer. 15, 721–743 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. L. Pei, S. Melmed, Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol. 11, 433–441 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. G. Fang, H. Yu, M.W. Kirschner, Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell 2, 163–171 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. L. Wang, J. Zhang, L. Wan, X. Zhou, Z. Wang, W. Wei, Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol. Ther. 151, 141–151 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J.M. Peters, The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. X. Han, R.Y. Poon, Critical differences between isoforms of securin reveal mechanisms of separase regulation. Mol. Cell. Biol. 33, 3400–3415 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. Vlotides, T. Eigler, S. Melmed, Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr. Rev. 28, 165–186 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. W.H. Li, L. Chang, Y.X. Xia, L. Wang, Y.Y. Liu, Y.H. Wang, Z. Jiang, J. Xiao, Z.R. Wang, Knockdown of PTTG1 inhibits the growth and invasion of lung adenocarcinoma cells through regulation of TGFB1/SMAD3 signaling. Int. J. Immunopathol. Pharmacol. 28, 45–52 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. S. Caporali, E. Alvino, L. Levati, A.I. Esposito, M. Ciomei, M.G. Brasca, D. del Bufalo, M. Desideri, E. Bonmassar, U. Pfeffer, S. d’Atri, Down-regulation of the PTTG1 proto-oncogene contributes to the melanoma suppressive effects of the cyclin-dependent kinase inhibitor PHA-848125. Biochem. Pharmacol. 84, 598–611 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. V. Ramaswamy, J.S. Williams, K.M. Robinson, R.L. Sopko, M.C. Schultz, Global control of histone modification by the anaphase-promoting complex. Mol. Cell. Biol. 23, 9136–9149 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K. Talvinen, J. Tuikkala, O. Nevalainen, A. Rantanen, P. Hirsimäki, J. Sundström, P. Kronqvist, Proliferation marker securin identifies favourable outcome in invasive ductal breast cancer. Br. J. Cancer 99, 335–340 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. X. Zhang, G.A. Horwitz, T.R. Prezant, A. Valentini, M. Nakashima, M.D. Bronstein, S. Melmed, Structure, expression, and function of human pituitary tumortransforming gene (PTTG). Mol. Endocrinol. 13, 156–166 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. R. Yu, S. Melmed, Pathogenesis of pituitary tumors. Prog. Brain Res. 182, 207–227 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. S.K. Panguluri, C. Yeakel, S.S. Kakar, Pttg: an important target gene for ovarian cancer therapy. J. Ovarian Res. 1, 6 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  15. S. Yan, C. Zhou, X. Lou, Z. Xiao, H. Zhu, Q. Wang, Pttg overexpression promotes lymph node metastasis in human esophageal squamous cell carcinoma. Cancer Res. 69, 3283–3290 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. M.L. Zhang, S. Lu, S.S. Zheng, Epigenetic changes of pituitary tumor-derived transforming gene 1 in pancreatic cancer. Hepatobil. Pancreat. Dis. Int. 7, 313–317 (2008)

    CAS  Google Scholar 

  17. J. Ai, Z. Zhang, D. Xin, H. Zhu, Q. Yan, Z. Xin, Identification of over-expressed genes in human renal cell carcinoma by combining suppression subtractive hybridization and cDNA library array. Sci. China C. Life. Sci. 47, 148–157 (2004)

    Article  PubMed  Google Scholar 

  18. A. Dominguez, F. Ramos-Morales, F. Romero, R.M. Rios, F. Dreyfus, M. Tortolero, Hpttg, a human homologue of rat Pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hpttg. Oncogene 17, 2187–2193 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. B. Chen, Z. Hou, C. Li, Y. Tong, MiRNA-494 inhibits metastasis of cervical cancer through Pttg1. Tumour Biol. 36, 7143–7149 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. C. Zhou, Y. Tong, K. Wawrowsky, S. Melmed, Pttg acts as a stat3 target gene for colorectal cancer cell growth and motility. Oncogene 33, 851–861 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. S. Huang, Q. Liao, L. Li, D. Xin, Pttg1 inhibits smad3 in prostate cancer cells to promote their proliferation. Tumour Biol. 35, 6265–6270 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. C. Solbach, M. Roller, S. Peters, M. Nicoletti, M. Kaufmann, R. Knecht, Pituitary tumor-transforming gene (PTTG): a novel target for antitumor therapy. Anticancer Res. 25, 121–125 (2005)

    CAS  PubMed  Google Scholar 

  23. F. Grizzi, S. di Biccari, B. Fiamengo, S. Štifter, P. Colombo, Pituitary tumor-transforming gene 1 is expressed in primary ductal breast carcinoma, lymph node infiltration, and distant metastases. Dis. Markers 35, 267–272 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M.J. Demeure, K.E. Coan, C.S. Grant, R.A. Komorowski, E. Stephan, S. Sinari, D. Mount, K.J. Bussey, PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery 154, 1405–1416 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  25. F. Salehi, B.W. Scheithauer, S. Sharma, K. Kovacs, R.V. Lloyd, M.D. Cusimano, D.G. Munoz, Immunohistochemical expression of PTTG in brain tumors. Anticancer Res. 33, 119–222 (2013)

    PubMed  Google Scholar 

  26. N. Genkai, J. Homma, M. Sano, R. Tanaka, R. Yamanaka, Increased expression of pituitary tumor-transforming gene (PTTG)-1 is correlated with poor prognosis in glioma patients. Oncol. Rep. 15, 1569–1574 (2006)

    CAS  PubMed  Google Scholar 

  27. K. Talvinen, H. Karra, R. Pitkänen, I. Ahonen, M. Nykänen, M. Lintunen, M. Söderström, T. Kuopio, P. Kronqvist, Low cdc27 and high Securin expression predict short survival for breast cancer patients. APMIS 121, 945–953 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. H. Karra, R. Pitkänen, M. Nykänen, K. Talvinen, T. Kuopio, M. Söderström, P. Kronqvist, Securin predicts aneuploidy and survival in breast cancer. Histopathology 60, 586–596 (2012)

    Article  PubMed  Google Scholar 

  29. H. Karra, H. Repo, I. Ahonen, E. Löyttyniemi, R. Pitkänen, M. Lintunen, T. Kuopio, M. Söderström, P. Kronqvist, Cdc20 and securin overexpression predict short-term breast cancer survival. Br. J. Cancer 110, 2905–2913 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. Sáez, M.A. Japón, F. Ramos-Morales, F. Romero, D.I. Segura, M. Tortolero, J.A. Pintor-Toro, hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene 18, 5473–5476 (1999)

    Article  PubMed  Google Scholar 

  31. F. Pierconti, D. Milardi, M. Martini, G. Grande, T. Cenci, G. Gulino, L.M. Larocca, G. Rindi, A. Pontecorvi, L. de Marinis, Pituitary-tumour-transforming-gene 1 expression in testicular cancer. Andrologia 47, 427–432 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. C. Wei, X. Yang, J. Xi, W. Wu, Z. Yang, W. Wang, Z. Tang, Q. Ying, Y. Zhang, High expression of pituitary tumor-transforming gene-1 predicts poor prognosis in clear cell renal cell carcinoma. Mol. Clin. Oncol. 3, 387–391 (2015)

    PubMed  Google Scholar 

  33. A.L. Stratford, K. Boelaert, L.A. Tannahill, D.S. Kim, A. Warfield, M.C. Eggo, N.J. Gittoes, L.S. Young, J.A. Franklyn, C.J. McCabe, Pituitary tumor transforming gene binding factor: a novel transforming gene in thyroid tumorigenesis. J. Clin. Endocrinol. Metab. 90, 4341–4349 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. W. Chien, L. Pei, A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J. Biol. Chem. 275, 19422–19427 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. C. Hsueh, J. Lin, Y. Chang, Prognostic significance of pituitary tumor-transforming gene-binding factor (PBF) expression in papillary thyroid carcinoma. Clin. Endocrinol. 78, 303–309 (2012)

    Article  Google Scholar 

  36. M.L. Read, G.D. Lewy, J.C. Fong, Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment. Cancer Res. 71, 6153–6164 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M.L. Read, R.I. Seed, B. Modasia, P.P. Kwan, N. Sharma, V.E. Smith, R.J. Watkins, S. Bansal, T. Gagliano, A.L. Stratford, T. Ismail, M.J. Wakelam, D.S. Kim, S.T. Ward, K. Boelaert, J.A. Franklyn, A.S. Turnell, C.J. McCabe, The proto-oncogene PBF binds p53 and is associated with prognostic features in colorectal cancer. Mol. Carcinog. 55, 15–26 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. M.L. Read, R.I. Seed, J.C. Fong, B. Modasia, G.A. Ryan, R.J. Watkins, T. Gagliano, V.E. Smith, A.L. Stratford, P.K. Kwan, N. Sharma, O.M. Dixon, J.C. Watkinson, K. Boelaert, J.A. Franklyn, A.S. Turnell, C.J. McCabe, The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells. Endocrinology 155, 1222–1234 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  39. J.C. McCabe, J.S. Khaira, K. Boelaert, A.P. Heaney, L.A. Tannahill, S. Hussain, R. Mitchell, J. Olliff, M.C. Sheppard, J.A. Franklyn, N.J. Gittoes, Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin. Endocrinol. 58, 141–150 (2003)

    Article  CAS  Google Scholar 

  40. R.J. Watkins, M.L. Read, V.E. Smith, N. Sharma, G.M. Reynolds, L. Buckley, C. Doig, M.J. Campbell, G. Lewy, M.C. Eggo, L.S. Loubiere, J.A. FranklynA, K. Boelaert, C.J. McCabe, Pituitary tumor transforming gene binding factor: a new gene in breast cancer. Cancer Res. 70, 3739–3749 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. Li, G. Morley, M. Whitaker, J.Y. Huang, Recruitment of Cdc20 to the kinetochore requires BubR1 but Not Mad2 in drosophila melanogaster. Mol. Cell. Biol. 30, 3384–3395 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Kapanidou, S. Lee, V.M. Bolanos-Garcia, BubR1 kinase: protection against aneuploidy and premature aging. Trends Mol. Med. 21, 364–372 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. X. Yang, W. Xu, Z. Hu, Y. Zhang, N. Xu, Chk1 is required for the metaphase-anaphase transition via regulating the expression and localization of Cdc20 and Mad2. Life Sci. 106, 12–18 (2014)

    Article  CAS  PubMed  Google Scholar 

  44. W. Wang, T. Wu, M.W. Kirschner, The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. Elife. 3, e03083 (2014)

    PubMed  PubMed Central  Google Scholar 

  45. L.A. Malureanu, K.B. Jeganathan, M. Hamada, L. Wasilewski, J. Davenport, J.M. van Deursen, BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/CCdc20 in interphase. Dev. Cell 16, 118–131 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M. Sczaniecka, A. Feoktistova, K.M. May, J.S. Chen, J. Blyth, K.L. Gould, K.G. Hardwick, The spindle checkpoint functions of Mad3 and Mad2 Depend on a Mad3 KEN box-mediated Interaction with Cdc20-anaphase-promoting complex (APC/C). J. Biol. Chem. 283, 23039–23047 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. V. Sudakin, G.K. Chan, T.J. Yen, Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. P. Lara-Gonzalez, M.I. Scott, M. Diez, O. Sen, S.S. Taylor, BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. PLoS One 7, e49041 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. A. Goldhirsch, J.N. Ingle, R.D. Gelber, A.S. Coates, B. Thürlimann, H.J. Senn, Panel members, thresholds for therapies: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer. Ann. Oncol. 20, 1319–1329 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S.R. Lakhani, WHO classification of tumours of the breast (International Agency for Research on Cancer, Lyon, 2012), pp. 10–11

    Google Scholar 

  51. A.S. Coates, E.P. Winer, A. Goldhirsch, R.D. Gelber, M. Gnant, M. Piccart-Gebhart, B. Thürlimann, H.J. Senn, Panel members, tailoring therapies-improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann. Oncol. 26, 1533–1546 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M.D. Xu, L. Dong, P. Qi, W.W. Weng, X.H. Shen, S.J. Ni, D. Huang, C. Tan, W.Q. Sheng, X.Y. Zhou, X. Du, Pituitary tumor-transforming gene-1 serves as an independent prognostic biomarker for gastric cancer. Gastric Cancer 19, 107–115 (2016)

    Article  CAS  PubMed  Google Scholar 

  53. T. Ito, Y. Shimada, T. Kan, S. David, Y. Cheng, Y. Mori, R. Agarwal, B. Paun, Z. Jin, A. Olaru, J.P. Hamilton, J. Yang, J.M. Abraham, S.J. Meltzer, F. Sato, Pituitary tumor-transforming 1 increases cell motility and promotes lymph node metastasis in esophageal squamous cell carcinoma. Cancer Res. 68, 3214–3224 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M.E. Hammond, D.F. Hayes, M. Dowsett, D.C. Allred, K.L. Hagerty, S. Badve, P.L. Fitzgibbons, G. Francis, N.S. Goldstein, M. Hayes, D.G. Hicks, S. Lester, R. Love, P.B. Mangu, L. McShane, K. Miller, C.K. Osborne, S. Paik, J. Perlmutter, A. Rhodes, H. Sasano, J.N. Schwartz, F.C. Sweep, S. Taube, E.E. Torlakovic, P. Valenstein, G. Viale, D. Visscher, T. Wheeler, R.B. Williams, J.L. Wittliff, A.C. Wolff, American society of clinical oncology/college of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  55. A.C. Wolff, M.E.H. Hammond, D.G. Hicks, M. Dowsett, L.M. McShane, K.H. Allison, D.C. Allred, J.M.S. Bartlett, M. Bilous, P. Fitzgibbons, W. Hanna, R.B. Jenkins, P.B. Mangu, S. Paik, E.A. Perez, M.F. Press, P.A. Spears, G.H. Vance, G. Viale, D.F. Hayes, Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline update. J. Clin. Oncol. 31, 3997–4014 (2013)

    Article  PubMed  Google Scholar 

  56. R. Yu, A.P. Heaney, W. Lu, J. Chen, S. Melmed, Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis. J. Biol. Chem. 275, 36502–36505 (2000)

    Article  CAS  PubMed  Google Scholar 

  57. Y.M. Mu, K. Oba, T. Yanase, T. Ito, K. Ashida, K. Goto, H. Morinaga, S. Ikuyama, R. Takayanagi, H. Nawata, Human pituitary tumor transforming gene (hPTTG) inhibits human lung cancer A549 cell growth through activation of p21(WAF1/CIP1). Endocr. J. 50, 771–781 (2003)

    Article  CAS  PubMed  Google Scholar 

  58. H. Zhang, R. Du, Y.H. Huang, L. She, L. Dong, X. Wang, A.L. Kwan, Characterization of pituitary tumor transforming gene in meningiomas. Clin. Neurol. Neurosurg. 122, 120–123 (2014)

    Article  PubMed  Google Scholar 

  59. S.E. Ghayad, J.A. Vendrell, I. Bieche, F. Spyratos, C. Dumontet, I. Treilleux, R. Lidereau, P.A. Cohen, Identification of TACC1, NOV, and PTTG1 as new candidate genes associated with endocrine therapy resistance in breast cancer. J. Mol. Endocrinol. 42, 87–103 (2009)

    Article  CAS  PubMed  Google Scholar 

  60. H. Lin, Q.L. Chen, X.Y. Wang, W. Han, T.Y. He, D. Yan, K. Chen, L.D. Su, Clinical significance of pituitary tumor transforming gene 1 and transgelin-2 in pancreatic cancer. Int. J. Immunopathol. Pharmacol. 26, 147–156 (2013)

    CAS  PubMed  Google Scholar 

  61. C.Y. Wen, T. Nakayama, A.P. Wang, M. Nakashima, Y.T. Ding, M. Ito, H. Ishibashi, M. Matsuu, K. Shichijo, I. Sekine, Expression of pituitary tumor transforming gene in human gastric carcinoma. World J. Gastroenterol. 10, 481–483 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. C. Ramírez, S. Cheng, G. Vargas, S.L. Asa, S. Ezzat, B. González, L. Cabrera, G. Guinto, M. Mercado, Expression of Ki-67, PTTG1, FGFR4, and SSTR 2, 3, and 5 in nonfunctioning pituitary adenomas: a high throughput TMA, immunohistochemical study. J. Clin. Endocrinol. Metab. 97, 1745–1751 (2012)

    Article  PubMed  Google Scholar 

  63. M.A. Moreno-Mateos, A.G. Espina, B. Torres, M.M. Gámez del Estal, A. Romero-Franco, R.M. Ríos, J.A. Pintor-Toro, PTTG1/Securin modulates microtubule nucleation and cell migration. Mol. Biol. Cell 22, 4302–4311 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. E.A. Rakha, J.S. Reis-Filho, I.O. Ellis, Basal-like breast cancer: a critical review. J. Clin. Oncol. 26, 2568–2581 (2008)

    Article  PubMed  Google Scholar 

  65. B.P. Schneider, E.P. Winer, W.D. Foulkes, J. Garber, C.M. Perou, A. Richardson, G.W. Sledge, L.A. Carey, Triple-negative breast cancer: risk factors to potential targets. Clin. Cancer Res. 14, 8010–8018 (2008)

    Article  CAS  PubMed  Google Scholar 

  66. M. Liang, J. Liu, H. Ji, M. Chen, Y. Zhao, S. Li, X. Zhang, J. Li, A aconitum coreanum polysaccharide fraction induces apoptosis of hepatocellular carcinoma (HCC) cells via pituitary tumor transforming gene 1 (PTTG1)-mediated suppression of the P13K/Akt and activation of p38 MAPK signaling pathway and displays antitumor activity in vivo. Tumour Biol. 36, 7085–7091 (2015)

    Article  CAS  PubMed  Google Scholar 

  67. L. Pei, Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J. Biol. Chem. 275, 31191–31198 (2000)

    Article  CAS  PubMed  Google Scholar 

  68. Y. Tong, T. Eigler, Transcriptional targets for pituitary tumor-transforming gene-1. J. Mol. Endocrinol. 43, 179–185 (2009)

    Article  CAS  PubMed  Google Scholar 

  69. M. Larance, A.I. Lamond, Multidimensional proteomics for cell biology. Nat. Rev. Mol. Cell Biol. 16, 269–280 (2015)

    Article  CAS  PubMed  Google Scholar 

  70. A.M. Gil-Bernabé, F. Romero, M.C. Limón-Mortés, M. Tortolero, Protein phosphatase 2A stabilizes human securin, whose phosphorylated forms are degraded via the SCF ubiquitin ligase. Mol. Cell. Biol. 26, 4017–4027 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  71. J. Du, Q. Du, Y. Zhang, C. Sajdik, Y. Ruan, X.X. Tian, W.G. Fang, Expression of cell-cycle regulatory proteins BUBR1, MAD2, Aurora A, cyclin A and cyclin E in invasive ductal breast carcinomas. Histol. Histopathol. 26, 761–768 (2011)

    PubMed  Google Scholar 

  72. A. Maciejczyk, J. Szelachowska, B. Czapiga, R. Matkowski, A. Hałoń, B. Györffy, P. Surowiak, Elevated BUBR1 expression is associated with poor survival in early breast cancer patients: 15 years follow-up analysis. J. Histochem. Cytochem. 61, 330–339 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  73. Y. Cirak, Y. Furuncuoglu, O. Yapicier, S. Alici, A. Argon, Predictive and prognostic values of BubR1 and synuclein-gamma expression in breast cancer. Int. J. Clin. Exp. Pathol. 8, 5345–5353 (2015)

    PubMed  PubMed Central  Google Scholar 

  74. G. Palma, G. Frasci, A. Chirico, E. Esposito, C. Siani, C. Saturnino, C. Arra, G. Ciliberto, A. Giordano, M. D’Aiuto, Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget 6, 26560–74 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 490(61–70) (2012)

  76. J.A. Bernal, A. Hernández, A, p53 stabilization can be uncoupled from its role in transcriptional activation by loss of PTTG1/securin. J. Biochem. 141, 737–45 (2007)

    Article  CAS  PubMed  Google Scholar 

  77. A. Petitjean, M.I. Achatz, A.L. Borresen-Dale, P. Hainaut, M. Olivier, TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Mrs. Sinikka Collanus for the help with histology and immunohistochemistry, and Mr. Jaakko Liippo for technical support with the photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gurvits.

Ethics declarations

All procedures performed involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal informed consent is not required.

Funding

This study was funded by the Turku University Hospital and the Research Foundation of Clinical Chemistry (Kliinisen kemian tutkimussäätiö), Finland.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurvits, N., Repo, H., Löyttyniemi, E. et al. Prognostic implications of securin expression and sub-cellular localization in human breast cancer. Cell Oncol. 39, 319–331 (2016). https://doi.org/10.1007/s13402-016-0277-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0277-5

Keywords

Navigation