Skip to main content

Advertisement

Log in

PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. Previously, PDCD2 (programmed cell death protein 2) has been identified as a putative tumor suppressor in gastric cancer. As yet, however, no reports on PDCD2 expression and its physical interactor NCoR1 (nuclear receptor co-repressor), and their effects in GIST have been reported.

Methods

The expression of PDCD2 and NCoR1 was assessed in 43 primary gastric GIST and normal gastric tissue samples using Western blotting and quantitative real-time PCR. Next, associations between PDCD2 and NCoR1 expression and various clinicopathological features, including survival, were determined. To assess the effects of PDCD2 and NCoR1 expression in vitro, two GIST-derived cell lines (GIST-T1 and GIST882) were (co-)transfected with the expression vectors pEGFP-N1-PDCD2 and pcDNA3.1-NCoR1, after which the cells were subjected to CCK-8, PI staining and Annexin V-FITC/PI double staining assays, respectively. Finally, the mechanisms of action of PDCD2 and NCoR1 in GIST-derived cells were determined using immunoprecipitation and Western blotting assays.

Results

We found that the PDCD2 and NCoR1 protein levels were lower in gastric GIST tissues than in normal gastric tissues. The PDCD2 and NCoR1 expression levels were found to be significantly associated with the survival of the patients. Through exogenous expression analyses, we found that PDCD2 and NCoR1 can decrease proliferation, and increase apoptosis and G1 cell cycle arrest, in GIST-derived cells. Furthermore, we found that PDCD2 and NCoR1 can activate Smad2 and Smad3.

Conclusions

Our data indicate that both PDCD2 and NCoR1 may act as tumor suppressors in GIST cells through the Smad signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Miettinen, M. Majidi, J. Lasota, Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): a review. Eur. J. Cancer 38, S39–S51 (2002)

    Article  PubMed  Google Scholar 

  2. H. S. Kim, S. S. Kim, S. G. Park, Bowel perforation associated sunitinib therapy for recurred gastric gastrointestinal stromal tumor. Ann. Surg. Treat. Res. 86, 220–225 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. G. Kindblom, H. E. Remotti, F. Aldenborg, J. M. Meis-Kindblom, Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am. J. Pathol. 152, 1259–1269 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Minakhina, N. Changela, R. Steward, Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery. Development 141, 259–268 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Merup, T. C. Moreno, M. Heyman, K. Rönnberg, D. Grandér, R. Detlofsson, O. Rasool, Y. Liu, S. Söderhäll, G. Juliusson, G. Gahrton, S. Einhorn, 6q deletions in acute lymphoblastic leukemia and non-Hodgkin’s lymphomas. Blood 91, 3397–3400 (1998)

    CAS  PubMed  Google Scholar 

  6. J. Zhang, W. Wei, H. C. Jin, R. C. Ying, A. K. Zhu, F. J. Zhang, The roles of APOBEC3B in gastric cancer. Int. J. Clin. Exp. Pathol. 8, 5089–5096 (2015)

    PubMed  PubMed Central  Google Scholar 

  7. J. Zhang, W. Wei, H. C. Jin, R. C. Ying, A. K. Zhu, F. J. Zhang, Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner. Oncol. Rep. 33, 103–110 (2015)

    CAS  PubMed  Google Scholar 

  8. D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks, M. Stark, J. Muller, P. Bork, L. J. Jensen, C. von Mering, The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. B. Scarr, P. A. Sharp, PDCD2 is a negative regulator of HCF-1 (C1). Oncogene 21, 5245–5254 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. X. G. Zhu, D. W. Kim, M. L. Goodson, M. L. Privalsky, S. Y. Cheng, NCoR1 regulates thyroid hormone receptor isoform-dependent adipogenesis. J. Mol. Endocrinol. 46, 233–244 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Taguchi, H. Sonobe, S. Toyonaga, I. Yamasaki, T. Shuin, A. Takano, K. Araki, K. Akimaru, K. Yuri, Conventional and molecular cytogenetic characterization of a new human cell line, GIST-T1, established from gastrointestinal stromal tumor. Lab. Investig. 82, 663–665 (2002)

    Article  PubMed  Google Scholar 

  12. B. W. Baron, N. Zeleznik-Le, M. J. Baron, C. Theisler, D. Huo, M. D. Krasowski, M. J. Thirman, R. M. Baron, J. M. Baron, Repression of the PDCD2 gene by BCL6 and the implications for the pathogenesis of human B and T cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 104, 7449–7454 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Kramer, C. J. Granier, S. Davis, K. Piso, J. Hand, A. B. Rabson, H. E. Sabaawy, PDCD2 controls hematopoietic stem cell differentiation during development. Stem Cells Dev. 22, 58–72 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. R. M. Lavinsky, K. Jepsen, T. Heinzel, J. Torchia, T. M. Mullen, R. Schiff, A. L. Del-Rio, M. Ricote, S. Ngo, J. Gemsch, S. G. Hilsenbeck, C. K. Osborne, C. K. Glass, M. G. Rosenfeld, D. W. Rose, Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl. Acad. Sci. U. S. A. 95, 2920–2925 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. Kurebayashi, T. Otsuki, H. Kunisue, K. Tanaka, S. Yamamoto, H. Sonoo, Expression levels of estrogen receptor-alpha, estrogen receptor-beta, coactivators, and corepressors in breast cancer. Clin. Cancer Res. 6, 512–518 (2000)

    CAS  PubMed  Google Scholar 

  16. Z. H. Zhang, H. Yamashita, T. Toyama, Y. Yamamoto, T. Kawasoe, M. Ibusuki, S. Tomita, H. Sugiura, S. Kobayashi, Y. Fujii, H. Iwase, Nuclear corepressor 1 expression predicts response to first-line endocrine therapy for breast cancer patients on relapse. Chin. Med. J. 122, 1764–1768 (2009)

    CAS  PubMed  Google Scholar 

  17. B. W. Baron, E. Hyjek, B. Gladstone, M. J. Thirman, J. M. Baron, PDCD2, a protein whose expression is repressed by BCL6, induces apoptosis in human cells by activation of the caspase cascade. Blood Cells Mol. Dis. 45, 169–175 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. H. Kashima, A. Horiuchi, J. Uchikawa, T. Miyamoto, A. Suzuki, T. Ashida, I. Konishi, T. Shiozawa, Up-regulation of nuclear receptor corepressor (NCoR) in progestin-induced growth suppression of endometrial hyperplasia and carcinoma. Anticancer Res. 29, 1023–1029 (2009)

    CAS  PubMed  Google Scholar 

  19. M. O. Lee, H. J. Kang, Role of coactivators and corepressors in the induction of the RAR beta gene in human colon cancer cells. Biol. Pharm. Bull. 25, 1298–1302 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. B. Schmierer, C. S. Hill, TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell. Biol. 8, 970–982 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. M. K. Wendt, J. A. Smith, W. P. Schiemann, p130Cas is required for mammary tumor growth and transforming growth factor-beta-mediated metastasis through regulation of Smad2/3 activity. J. Biol. Chem. 284, 34145–34156 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. R. Tang, Y. X. Wang, S. Guo, S. Y. Han, D. Wang, CSMD1 exhibits antitumor activity in A375 melanoma cells through activation of the Smad pathway. Apoptosis 17, 927–937 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. D. Zurlo, C. Leone, G. Assante, S. Salzano, G. Renzone, A. Scaloni, C. Foresta, V. Colantuoni, A. Lupo, Cladosporol a stimulates G1-phase arrest of the cell cycle by up-regulation of p21(waf1/cip1) expression in human colon carcinoma HT-29 cells. Mol. Carcinog. 52, 1–17 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. X. R. Han, Y. Sun, X. Z. Bai, The anti-tumor role and mechanism of integrated and truncated PDCD5 proteins in osteosarcoma cells. Cell. Signal. 24, 1713–1721 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. M. E. Han, S. J. Baek, S. Y. Kim, C. D. Kang, S. O. Oh, ATOH1 can regulate the tumorigenicity of gastric cancer cells by inducing the differentiation of cancer stem cells. PLoS One 10, e0126085 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Scientific Foundation of Liaoning Province (2014021036), General Project Scientific Research from the Department of Education of Liaoning Province (L2012288) and Natural Scientific Foundation of China (81502107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hai Zhao.

Ethics declarations

Competing interests

The authors declare that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Song, XW., Bu, XM. et al. PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors. Cell Oncol. 39, 129–137 (2016). https://doi.org/10.1007/s13402-015-0258-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-015-0258-0

Keywords

Navigation