Skip to main content

Advertisement

Log in

Impact of SOX18 expression in cancer cells and vessels on the outcome of invasive ductal breast carcinoma

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

SOX18 is a transcription factor known to be involved in hair follicle, blood and lymphatic vessel development, as well as wound healing processes (together with SOX7 and SOX17). In addition, it has been reported that SOX18 may affect the growth of cancer cells in vitro. Until now, the exact role of SOX18 expression in invasive ductal breast carcinoma (IDC) has remained unknown.

Methods

In this study, we have investigated SOX18 expression in cancer cells and endothelial cells in 122 IDC samples using immunohistochemistry (IHC). SOX18 expression was also determined using real-time PCR and Western blotting in a series of breast cancer-derived cell lines (i.e., MCF-7, BT-474, SK-BR-3, MDA-MB-231, BO2).

Results

Using IHC, we observed SOX18 nuclear expression in cancer cells, as well as in blood and lymphatic vessels of the IDC samples tested. SOX18 expression in the IDC samples correlated with a higher malignancy grade (Grade 2 and Grade 3 versus Grade 1; p = 0.02 and p = 0.009, respectively) and VEGF-D expression (r = 0.27, p = 0.007). SOX18 expression was also associated with HER2 positivity (p = 0.02). A significantly higher SOX18 expression was found in the HER2-positive cell line BT-474, and a significantly lower expression in the triple negative cell lines MDA-MB-231 and BO2. Laser capture microdissection of IDC samples revealed significantly higher mRNA SOX7, SOX17 and SOX18 expression levels in the vessels as compared to the cancer cells (p = 0.02 and p = 0.0002, p < 0.0001, respectively). SOX18 positive intratumoral and peritumoral microvessel counts (MVC) were associated with higher malignancy grades (p = 0.04 and p = 0.02, respectively). Moreover, peritumoral SOX18 positive MVC were found to act as an independent marker for a poor prognosis (p = 0.04).

Conclusion

SOX18 expression may serve as a marker for a poor prognosis in IDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Siegel, D. Naishadham, A. Jemal, Cancer statistics, 2013. CA Cancer J Clin. 63, 11–30 (2013)

    Article  PubMed  Google Scholar 

  2. M. Wegner, From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409–1420 (1999)

    Article  PubMed  CAS  Google Scholar 

  3. V.R. Harley, R. Lovell-Badge, P.N. Goodfellow, Definition of a consensus DNA binding site for SRY. Nucleic Acids Res. 22, 1500–1501 (1994)

    Article  PubMed  CAS  Google Scholar 

  4. M. Wegner, All purpose Sox: The many roles of Sox proteins in gene expression. Int J Biochem Cell Biol. 42, 381–390 (2010)

    Article  PubMed  CAS  Google Scholar 

  5. T.L. Dunn, L. Mynett-Johnson, E.M. Wright, B.M. Hosking, P.A. Koopman, G.E. Muscat, Sequence and expression of Sox-18 encoding a new HMG-box transcription factor. Gene. 161, 223–225 (1995)

    Article  PubMed  CAS  Google Scholar 

  6. Y. Kanai, M. Kanai-Azuma, T. Noce, T.C. Saido, T. Shiroishi, Y. Hayashi, K. Yazaki, Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. J Cell Biol. 133, 667–681 (1996)

    Article  PubMed  CAS  Google Scholar 

  7. K. Taniguchi, Y. Hiraoka, M. Ogawa, Y. Sakai, S. Kido, S. Aiso, Isolation and characterization of a mouse SRY-related cDNA, mSox7. Biochim Biophys Acta. 1445, 225–231 (1999)

    Article  PubMed  CAS  Google Scholar 

  8. M. Francois, P. Koopman, M. Beltrame, SoxF genes: Key players in the development of the cardio-vascular system. Int J Biochem Cell Biol. 42, 445–448 (2010)

    Article  PubMed  CAS  Google Scholar 

  9. S. Cermenati, S. Moleri, S. Cimbro, P. Corti, L. Del Giacco, R. Amodeo, E. Dejana, P. Koopman, F. Cotelli, M. Beltrame, Sox18 and Sox7 play redundant roles in vascular development. Blood. 111, 2657–2666 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. B. Hosking, M. Francois, D. Wilhelm, F. Orsenigo, A. Caprini, T. Svingen, D. Tutt, T. Davidson, C. Browne, E. Dejana, P. Koopman, Sox7 and Sox17 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice. Development. 136, 2385–2391 (2009)

    Article  PubMed  CAS  Google Scholar 

  11. T. Matsui, M. Kanai-Azuma, K. Hara, S. Matoba, R. Hiramatsu, H. Kawakami, M. Kurohmaru, P. Koopman, Y. Kanai, Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J Cell Sci. 119, 3513–3526 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. Y. Sakamoto, K. Hara, M. Kanai-Azuma, T. Matsui, Y. Miura, N. Tsunekawa, M. Kurohmaru, Y. Saijoh, P. Koopman, Y. Kanai, Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos. Biochem Biophys Res Commun. 360, 539–544 (2007)

    Article  PubMed  CAS  Google Scholar 

  13. M. Downes, M. Francois, C. Ferguson, R.G. Parton, P. Koopman, Vascular defects in a mouse model of hypotrichosis-lymphedema-telangiectasia syndrome indicate a role for SOX18 in blood vessel maturation. Hum Mol Genet. 18, 2839–2850 (2009)

    Article  PubMed  CAS  Google Scholar 

  14. M. Francois, A. Caprini, B. Hosking, F. Orsenigo, D. Wilhelm, C. Browne, K. Paavonen, T. Karnezis, R. Shayan, M. Downes, T. Davidson, D. Tutt, K.S. Cheah, S.A. Stacker, G.E. Muscat, M.G. Achen, E. Dejana, P. Koopman, Sox18 induces development of the lymphatic vasculature in mice. Nature. 456, 643–647 (2008)

    Article  PubMed  CAS  Google Scholar 

  15. A. Irrthum, K. Devriendt, D. Chitayat, G. Matthijs, C. Glade, P.M. Steijlen, J.P. Fryns, M.A. Van Steensel, M. Vikkula, Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet. 72, 1470–1478 (2003)

    Article  PubMed  CAS  Google Scholar 

  16. R. Herpers, E. van de Kamp, H.J. Duckers, S. Schulte-Merker, Redundant roles for sox7 and sox18 in arteriovenous specification in zebrafish. Circ Res. 102, 12–15 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. R.A. Mohammed, I.O. Ellis, A.M. Mahmmod, E.C. Hawkes, A.R. Green, E.A. Rakha, S.G. Martin, Lymphatic and blood vessels in basal and triple-negative breast cancers: characteristics and prognostic significance. Mod Pathol. 24, 774–785 (2011)

    Article  PubMed  CAS  Google Scholar 

  18. R.A. Mohammed, I.O. Ellis, S. Elsheikh, E.C. Paish, S.G. Martin, Lymphatic and angiogenic characteristics in breast cancer: morphometric analysis and prognostic implications. Breast Cancer Res Treat. 113, 261–273 (2009)

    Article  PubMed  Google Scholar 

  19. C.S. Williams, R.D. Leek, A.M. Robson, S. Banerji, R. Prevo, A.L. Harris, D.G. Jackson, Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol. 200, 195–206 (2003)

    Article  PubMed  CAS  Google Scholar 

  20. I.A. Darby, T. Bisucci, S. Raghoenath, J. Olsson, G.E. Muscat, P. Koopman, Sox18 is transiently expressed during angiogenesis in granulation tissue of skin wounds with an identical expression pattern to Flk-1 mRNA. Lab Invest. 81, 937–943 (2001)

    Article  PubMed  CAS  Google Scholar 

  21. N. Young, C.N. Hahn, A. Poh, C. Dong, D. Wilhelm, J. Olsson, G.E. Muscat, P. Parsons, J.R. Gamble, P. Koopman, Effect of disrupted SOX18 transcription factor function on tumor growth, vascularization, and endothelial development. J Natl Cancer Inst. 98, 1060–1067 (2006)

    Article  PubMed  CAS  Google Scholar 

  22. T. Saitoh, M. Katoh, Expression of human SOX18 in normal tissues and tumors. Int J Mol Med. 10, 339–344 (2002)

    PubMed  CAS  Google Scholar 

  23. B. W. Eom, M. J. Jo, M. C. Kook, K. W. Ryu, I. J. Choi, B. H. Nam, Y. W. Kim, J. H. Lee: The lymphangiogenic factor SOX 18: A key indicator to stage gastric tumor progression, Int J Cancer. (2011)

  24. M. Garcia-Ramirez, J. Martinez-Gonzalez, J.O. Juan-Babot, C. Rodriguez, L. Badimon, Transcription factor SOX18 is expressed in human coronary atherosclerotic lesions and regulates DNA synthesis and vascular cell growth. Arterioscler Thromb Vasc Biol. 25, 2398–2403 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. M. Lacroix, G. Leclercq, Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 83, 249–289 (2004)

    Article  PubMed  CAS  Google Scholar 

  26. P. Dziegiel, T. Owczarek, E. Plazuk, A. Gomulkiewicz, M. Majchrzak, M. Podhorska-Okolow, K. Driouch, R. Lidereau, M. Ugorski, Ceramide galactosyltransferase (UGT8) is a molecular marker of breast cancer malignancy and lung metastases. Br J Cancer. 103, 524–531 (2010)

    Article  PubMed  CAS  Google Scholar 

  27. H.J. Bloom, W.W. Richardson, Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer. 11, 359–377 (1957)

    Article  PubMed  CAS  Google Scholar 

  28. C.W. Elston, Grading of invasive carcinoma of the breast, in Diagnostic histopathology of the breast, ed. by D.L. Page (Churchill Livingstone, Edinburgh, 1987), pp. 300–311

    Google Scholar 

  29. B. Pula, A. Jethon, A. Piotrowska, A. Gomulkiewicz, T. Owczarek, J. Calik, A. Wojnar, W. Witkiewicz, J. Rys, M. Ugorski, P. Dziegiel, M. Podhorska-Okolow, Podoplanin expression by cancer-associated fibroblasts predicts poor outcome in invasive ductal breast carcinoma. Histopathology. 59, 1249–1260 (2011)

    Article  PubMed  Google Scholar 

  30. W. Remmele, H.E. Stegner, Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe. 8, 138–140 (1987)

    PubMed  CAS  Google Scholar 

  31. P.B. Vermeulen, G. Gasparini, S.B. Fox, C. Colpaert, L.P. Marson, M. Gion, J.A. Belien, R.M. de Waal, E. Van Marck, E. Magnani, N. Weidner, A.L. Harris, L.Y. Dirix, Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer. 38, 1564–1579 (2002)

    Article  PubMed  CAS  Google Scholar 

  32. A. Goldhirsch, J.N. Ingle, R.D. Gelber, A.S. Coates, B. Thurlimann, H.J. Senn, m. Panel: Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol. 20, 1319–1329 (2009)

    Article  PubMed  CAS  Google Scholar 

  33. R. Doroudi, M. Andersson, P.A. Svensson, M. Ekman, S. Jern, L. Karlsson, Methodological studies of multiple reference genes as endogenous controls in vascular gene expression studies. Endothelium. 12, 215–223 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. T. Azhikina, A. Kozlova, T. Skvortsov, E. Sverdlov, Heterogeneity and degree of TIMP4, GATA4, SOX18, and EGFL7 gene promoter methylation in non-small cell lung cancer and surrounding tissues. Cancer Genet. 204, 492–500 (2011)

    Article  PubMed  CAS  Google Scholar 

  35. R. Dammann, M. Strunnikova, U. Schagdarsurengin, M. Rastetter, M. Papritz, U.E. Hattenhorst, H.S. Hofmann, R.E. Silber, S. Burdach, G. Hansen, CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer. 41, 1223–1236 (2005)

    Article  PubMed  CAS  Google Scholar 

  36. J. Kao, K. Salari, M. Bocanegra, Y.L. Choi, L. Girard, J. Gandhi, K.A. Kwei, T. Hernandez-Boussard, P. Wang, A.F. Gazdar, J.D. Minna, J.R. Pollack, Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 4, e6146 (2009)

    Article  PubMed  Google Scholar 

  37. C.A. Hudis, L. Gianni, Triple-negative breast cancer: an unmet medical need. Oncologist. 16(Suppl 1), 1–11 (2011)

    Article  PubMed  Google Scholar 

  38. W. Takash, J. Canizares, N. Bonneaud, F. Poulat, M.G. Mattei, P. Jay, P. Berta, SOX7 transcription factor: sequence, chromosomal localisation, expression, transactivation and interference with Wnt signalling. Nucleic Acids Res. 29, 4274–4283 (2001)

    Article  PubMed  CAS  Google Scholar 

  39. D.Y. Fu, Z.M. Wang, C. Li, B.L. Wang, Z.Z. Shen, W. Huang, Z.M. Shao, Sox17, the canonical Wnt antagonist, is epigenetically inactivated by promoter methylation in human breast cancer. Breast Cancer Res Treat. 119, 601–612 (2010)

    Article  PubMed  CAS  Google Scholar 

  40. E. Mylona, A. Nomikos, P. Alexandrou, I. Giannopoulou, A. Keramopoulos, L. Nakopoulou, Lymphatic and blood vessel morphometry in invasive breast carcinomas: relation with proliferation and VEGF-C and -D proteins expression. Histol Histopathol. 22, 825–835 (2007)

    PubMed  CAS  Google Scholar 

  41. W.W. Choi, M.M. Lewis, D. Lawson, Q. Yin-Goen, G.G. Birdsong, G.A. Cotsonis, C. Cohen, A.N. Young, Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod Pathol. 18, 143–152 (2005)

    Article  PubMed  CAS  Google Scholar 

  42. D.W. van der Schaft, P. Pauwels, S. Hulsmans, M. Zimmermann, L.V. van de Poll-Franse, A.W. Griffioen, Absence of lymphangiogenesis in ductal breast cancer at the primary tumor site. Cancer Lett. 254, 128–136 (2007)

    Article  PubMed  Google Scholar 

  43. R. Prevo, S. Banerji, D.J. Ferguson, S. Clasper, D.G. Jackson, Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem. 276, 19420–19430 (2001)

    Article  PubMed  CAS  Google Scholar 

  44. S. Breiteneder-Geleff, A. Soleiman, H. Kowalski, R. Horvat, G. Amann, E. Kriehuber, K. Diem, W. Weninger, E. Tschachler, K. Alitalo, D. Kerjaschki, Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol. 154, 385–394 (1999)

    Article  PubMed  CAS  Google Scholar 

  45. S. Hirakawa, L.F. Brown, S. Kodama, K. Paavonen, K. Alitalo, M. Detmar, VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood. 109, 1010–1017 (2007)

    Article  PubMed  CAS  Google Scholar 

  46. S. Hirakawa, S. Kodama, R. Kunstfeld, K. Kajiya, L.F. Brown, M. Detmar, VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 201, 1089–1099 (2005)

    Article  PubMed  CAS  Google Scholar 

  47. N.E. Tobler, M. Detmar, Tumor and lymph node lymphangiogenesis–impact on cancer metastasis. J Leukoc Biol. 80, 691–696 (2006)

    Article  PubMed  CAS  Google Scholar 

  48. Y. Nakamura, H. Yasuoka, M. Tsujimoto, S. Imabun, M. Nakahara, K. Nakao, M. Nakamura, I. Mori, K. Kakudo, Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat. 91, 125–132 (2005)

    Article  PubMed  CAS  Google Scholar 

  49. P. Bono, V.M. Wasenius, P. Heikkila, J. Lundin, D.G. Jackson, H. Joensuu, High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res. 10, 7144–7149 (2004)

    Article  PubMed  CAS  Google Scholar 

  50. T. Duong, S. T. Proulx, P. Luciani, J. C. Leroux, M. Detmar, P. Koopman, M. Francois: Genetic ablation of SOX18 function suppresses tumor lymphangiogenesis and metastasis of melanoma in mice, Cancer Res. (2012)

Download references

Acknowledgments

The authors wish to thank Mrs. Teresa Klepuszewszka from the Department of Pathology, University of Environmental and Life Sciences, and Mrs. Magdalena Chmielewska, Mrs. Aleksandra Piotrowska, Ms. Aleksandra Jethon, Ms. Renata Brykner and Mrs. Lucja Cwynar-Zajac from the Department of Histology and Embryology, Wroclaw Medical University for their technical support. Ms. Anna Frydlewicz from the Regional Specialist Hospital, Research and Development Centre, Wroclaw is acknowledged for sample collection.

This publication was financially supported by the “Wrovasc—Integrated Cardiovascular Centre” project, co-financed by the European Regional Development Fund, within the Innovative Economy Operational Program, 2007–2013.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Podhorska-Okolow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pula, B., Olbromski, M., Wojnar, A. et al. Impact of SOX18 expression in cancer cells and vessels on the outcome of invasive ductal breast carcinoma. Cell Oncol. 36, 469–483 (2013). https://doi.org/10.1007/s13402-013-0151-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-013-0151-7

Keywords

Navigation