Skip to main content

Advertisement

Log in

Visualising and quantifying angiogenesis in metastatic colorectal cancer

A comparison of methods and their predictive value for chemotherapy response

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Angiogenesis plays an important role in tumour growth and dissemination. We have recently shown that blood vessel density, determined by image analysis based on microRNA-126 (miRNA-126) in situ hybridization (ISH) in the primary tumours of metastatic colorectal cancers (mCRC), is predictive of chemotherapy response. Here, we evaluated whether more general approaches to determine vessel density in primary tumours are equally predictive of chemotherapy response.

Methods

This methodological study was carried out using paraffin embedded tissues from primary tumours of 89 patients with mCRC, who had all been treated with first-line chemotherapy (XELOX). Tissue sections from the deepest invasive tumour front were processed for miRNA-126 ISH and CD34 immunohistochemistry (IHC). Estimates of microvessel density (MVD) were obtained for both miRNA-126 and CD34 by quantitative image analyses (MVDi), vascular area per image (μm2) analyses, and manually counting vessels in vascular hot spots (MVDh). Clinical responses were evaluated according to Response Evaluation Criteria In Solid Tumours (RECIST).

Results

The MVDi for miRNA-126 showed a significant correlation with treatment response (p = 0.01), with a median value of 2,071 μm2 (95 % CI, 1,505–3,075 μm2) in the responder group compared to 1,337 μm2 (95 % CI, 1,038–1,499 μm2) in the non-responder group. This difference translated into a significant difference in progression free survival (p = 0.01).

Conclusions

The methodological assessment of MVD and the molecular vessel marker are both important for the prediction of the chemotherapy response in mCRC. Our findings indicate that MVDi for miRNA-126 represents a powerful estimate and may serve as a clinical biomarker superior to MVDh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  PubMed  CAS  Google Scholar 

  2. R.T. Tong, Y. Boucher, S.V. Kozin, F. Winkler, D.J. Hicklin, R.K. Jain, Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. H. Wildiers, G. Guetens, B.G. De, E. Verbeken, B. Landuyt, B. Landuyt, E.A. Bruijn, A.T. van Oosterom, Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br. J. Cancer 88, 1979–1986 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. C.G. Willett, D.G. Duda, E. di Tomaso, Y. Boucher, B.G. Czito, Z. Vujaskovic, G. Vlahovic, J. Bendell, K.S. Cohen, H.I. Hurwitz, Complete pathological response to bevacizumab and chemoradiation in advanced rectal cancer. Nat. Clin. Pract. Oncol. 4, 316–321 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. K. Akagi, Y. Ikeda, Y. Sumiyoshi, Y. Kimura, J. Kinoshita, M. Miyazaki, T. Abe, Estimation of angiogenesis with anti-CD105 immunostaining in the process of colorectal cancer development. Surgery 131, S109–S113 (2002)

    Article  PubMed  Google Scholar 

  6. G.G. Des, B. Uzzan, P. Nicolas, M. Cucherat, J.F. Morere, R. Benamouzig, J.L. Breau, G.Y. Perret, Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br. J. Cancer 94, 1823–1832 (2006)

    Article  Google Scholar 

  7. P. Bossi, G. Viale, A.K. Lee, R. Alfano, G. Coggi, S. Bosari, Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res. 55, 5049–5053 (1995)

    PubMed  CAS  Google Scholar 

  8. Y. Takebayashi, S. Aklyama, K. Yamada, S. Akiba, T. Aikou, Angiogenesis as an unfavorable prognostic factor in human colorectal carcinoma. Cancer 78, 226–231 (1996)

    Article  PubMed  CAS  Google Scholar 

  9. L. Hlatky, P. Hahnfeldt, J. Folkman, Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J. Natl. Cancer Inst. 94, 883–893 (2002)

    Article  PubMed  Google Scholar 

  10. E. Fonsatti, V.L. Del, M. Altomonte, L. Sigalotti, M.R. Nicotra, S. Coral, P.G. Natali, M. Maio, Endoglin: an accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J. Cell. Physiol. 188, 1–7 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. D.W. Miller, W. Graulich, B. Karges, S. Stahl, M. Ernst, A. Ramaswamy, H.H. Sedlacek, R. Muller, J. Adamkiewicz, Elevated expression of endoglin, a component of the TGF-beta-receptor complex, correlates with proliferation of tumor endothelial cells. Int. J. Cancer 81, 568–572 (1999)

    Article  PubMed  CAS  Google Scholar 

  12. R. Minhajat, D. Mori, F. Yamasaki, Y. Sugita, T. Satoh, O. Tokunaga, Endoglin (CD105) expression in angiogenesis of colon cancer: analysis using tissue microarrays and comparison with other endothelial markers. Virchows Arch. 448, 127–134 (2006)

    Article  PubMed  CAS  Google Scholar 

  13. D. Royston, D.G. Jackson, Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J. Pathol. 217, 608–619 (2009)

    Article  PubMed  CAS  Google Scholar 

  14. A. Esquela-Kerscher, F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006)

    Article  PubMed  CAS  Google Scholar 

  15. W. Filipowicz, S.N. Bhattacharyya, N. Sonenberg, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. J.E. Fish, D. Srivastava, MicroRNAs: opening a new vein in angiogenesis research. Sci. Signal. 2, pe1 (2009)

    Article  PubMed  Google Scholar 

  17. A. Kuehbacher, C. Urbich, A.M. Zeiher, S. Dimmeler, Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res. 101, 59–68 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. S. Jorgensen, A. Baker, S. Moller, B.S. Nielsen, Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52, 375–381 (2010)

    Article  PubMed  CAS  Google Scholar 

  19. J.E. Fish, M.M. Santoro, S.U. Morton, S. Yu, R.F. Yeh, J.D. Wythe, K.N. Ivey, B.G. Bruneau, D.Y. Stainier, D. Srivastava, miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15(272–284) (2008)

    Google Scholar 

  20. S. Wang, A.B. Aurora, B.A. Johnson, X. Qi, J. McAnally, J.A. Hill, J.A. Richardson, R. Bassel-Duby, E.N. Olson, The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008)

    Article  PubMed  Google Scholar 

  21. E. Wienholds, W.P. Kloosterman, E. Miska, E. Alvarez-Saavedra, E. Berezikov, E. de Bruijn, H.R. Horvitz, S. Kauppinen, R.H. Plasterk, MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005)

    Article  PubMed  CAS  Google Scholar 

  22. B.S. Nielsen, S. Jorgensen, J.U. Fog, R. Sokilde, I.J. Christensen, U. Hansen, N. Brunner, A. Baker, S. Moller, H.J. Nielsen, High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin. Exp. Metastasis 28, 27–38 (2011)

    Article  PubMed  CAS  Google Scholar 

  23. T.F. Hansen, F.B. Soerensen, J. Lindebjerg, A. Jakobsen, The predictive value of microRNA-126 in relation to first line treatment with capecitabine and oxaliplatin in patients with metastatic colorectal cancer. BMC Cancer 12, 83 (2012)

    Article  PubMed  CAS  Google Scholar 

  24. S. Hansen, D.A. Grabau, C. Rose, M. Bak, F.B. Sorensen, Angiogenesis in breast cancer: a comparative study of the observer variability of methods for determining microvessel density. Lab. Invest. 78, 1563–1573 (1998)

    PubMed  CAS  Google Scholar 

  25. R. Rajaganeshan, R. Prasad, P.J. Guillou, C.R. Chalmers, N. Scott, R. Sarkar, G. Poston, D.G. Jayne, The influence of invasive growth pattern and microvessel density on prognosis in colorectal cancer and colorectal liver metastases. Br. J. Cancer 96, 1112–1117 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. A.A. Romani, A.F. Borghetti, R.P. Del, M. Sianesi, P. Soliani, The risk of developing metastatic disease in colorectal cancer is related to CD105-positive vessel count. J. Surg. Oncol. 93, 446–455 (2006)

    Article  PubMed  Google Scholar 

  27. T.F. Hansen, F.B. Sorensen, K.L. Spindler, D.A. Olsen, R.F. Andersen, J. Lindebjerg, I Brandslund, A Jakobsen, Microvessel density and the association with single nucleotide polymorphisms of the vascular endothelial growth factor receptor 2 in patients with colorectal cancer. Virchows Arch. 456, 251–260 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. H. Hurwitz, L. Fehrenbacher, W. Novotny, T. Cartwright, J. Hainsworth, W. Heim, J. Berlin, A. Baron, S. Griffing, E. Holmgren, Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004)

    Article  PubMed  CAS  Google Scholar 

  29. C.J. Allegra, G. Yothers, M.J. O’Connell, S. Sharif, N.J. Petrelli, L.H. Colangelo, J.N. Atkins, T.E. Seay, L. Fehrenbacher, R.M. Goldberg, Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J. Clin. Oncol. 29, 11–16 (2011)

    Article  PubMed  CAS  Google Scholar 

  30. S. Nicoli, C. Standley, P. Walker, A. Hurlstone, K.E. Fogarty, N.D. Lawson, MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464, 1196–2000 (2010)

    Article  PubMed  CAS  Google Scholar 

  31. T.F. Hansen, C.L. Andersen, B.S. Nielsen, K.L. Spindler, F.B. Sorensen, J. Lindebjerg, I. Brandslund, A. Jakobsen, Elevated microRNA-126 is associated with high vascular endothelial growth factor receptor 2 expression levels and high microvessel density in colorectal cancer. Oncol Lett 2, 1101–1106 (2011)

    PubMed  Google Scholar 

  32. K.J. Png, N. Halberg, M. Yoshida, S.F. Tavazoie, A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481, 190–194 (2011)

    Article  PubMed  Google Scholar 

  33. R.K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. R.K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)

    Article  PubMed  CAS  Google Scholar 

  35. V. Kulda, M. Pesta, O. Topolcan, V. Liska, V. Treska, A. Sutnar, K. Rupert, M. Ludvikova, V. Babuska, L. Holubec Jr., Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet. Cytogenet. 200, 154–160 (2010)

    Article  PubMed  CAS  Google Scholar 

  36. M.M. Vickers, J. Bar, I. Gorn-Hondermann, N. Yarom, M. Daneshmand, J.E. Hanson, C.L. Addison, T.R. Asmis, D.J. Jonker, J. Maroun, Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clin. Exp. Metastasis 29, 123–132 (2011)

    Article  PubMed  Google Scholar 

  37. A.E. Lindenmayer, M. Miettinen, Immunophenotypic features of uterine stromal cells. CD34 expression in endocervical stroma. Virchows Arch. 426, 457–460 (1995)

    Article  PubMed  CAS  Google Scholar 

  38. M. Van de Rijn, R.V. Rouse, CD34. Appl Immunohistochem 2, 71–80 (1994)

    Google Scholar 

  39. Y. Xi, G. Nakajima, E. Gavin, C.G. Morris, K. Kudo, K. Hayashi, J. Ju, Systematic analysis of microRNA axpression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13, 1668–1674 (2007)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very thankful for the technical assistance provided by Birgit Roed Sørensen and Stine Jørgensen, and for the linguistic editing provided by Karin Larsen. Furthermore, René dePont Christensen is acknowledged for statistical counselling. This study was supported by The Cancer Foundation and The Danish Council for Independent Research, which did not affect any part of the study.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Frøstrup Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, T.F., Nielsen, B.S., Jakobsen, A. et al. Visualising and quantifying angiogenesis in metastatic colorectal cancer. Cell Oncol. 36, 341–350 (2013). https://doi.org/10.1007/s13402-013-0139-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-013-0139-3

Keywords

Navigation