Skip to main content

Advertisement

Log in

SLUG silencing increases radiosensitivity of melanoma cells in vitro

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Melanoma radioresistance has been attributed to the presence of tumor cells with highly efficient DNA damage repair mechanisms. We examined the expression of genes involved in DNA damage repair and DNA damage sensing, and assessed their modulation by SLUG silencing, which is potentially capable of increasing radiosensitivity.

Methods

Two melanoma cell lines (M14 and M79) were used to evaluate in vitro radiation-induced cytotoxicity before and after SLUG silencing. mRNA expression levels of BRCA1, ERCC1, DNA-PK, PARP, MGMT, ATM and TGM2 were determined by real-time RT-PCR, and protein expression levels of SLUG, caspase 3, p21, PUMA and pMAPK by Western blotting.

Results

The cytotoxic effect of radiation was high in M14 and low in M79 cells. SLUG silencing increased the interference of radiation on cell cycle distribution and cell killing by 60 % and 80 % in M79 cells after a 2.4 Gy and 5 Gy radiation dose, respectively. It also led to a significant inhibition of expression of genes involved in DNA damage repair and DNA damage sensing in all cell lines maintained after radiation. An almost total inhibition was observed for TGM2, which is expressed at a high basal level in the most radioresistant cell line (M79). Protein expression of PUMA was induced by radiation and was enhanced after SLUG silencing.

Conclusions

Our results reveal a pivotal role of SLUG in regulating a cellular network involved in the response to DNA damage, and highlight the importance of TGM2 in radiosensitivity modulation. SLUG silencing appears to increase radiation sensitivity of the melanoma cells tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Gray-Schopfer, C. Wellbrock, R. Marais, Melanoma biology and new targeted therapy. Nature 445, 851–857 (2007)

    Article  PubMed  CAS  Google Scholar 

  2. N. Khan, M.K. Khan, A. Almasan, A.D. Singh, R. Macklis, The evolving role of radiation therapy in the management of malignant melanoma. Int. J. Radiat. Oncol. Biol. Phys. 80, 645–654 (2011)

    Article  PubMed  Google Scholar 

  3. J.B. Little, G.M. Hahn, E. Frindel, M. Tubiana, Repair of potentially lethal radiation damage in vitro and in vivo. Radiology 106, 689–694 (1973)

    PubMed  CAS  Google Scholar 

  4. K.R. Olivier, S.E. Schild, C.G. Morris, P.D. Brown, S.N. Markovic, A higher radiotherapy dose is associated with more durable palliation and longer survival in patients with metastatic melanoma. Cancer 110, 1791–1795 (2007)

    Article  PubMed  Google Scholar 

  5. L. Coultas, A. Strasser, The molecular control of DNA damage-induced cell death. Apoptosis 5, 491–507 (2000)

    Article  PubMed  CAS  Google Scholar 

  6. U. Kasten-Pisula, A. Menegakis, I. Brammer, K. Borgmann, W.Y. Mansour, S. Degenhardt, M. Krause, A. Schreiber, J. Dahm-Daphi, C. Petersen, E. Dikomey, M. Baumann, The extreme radiosensitivity of the squamous cell carcinoma SKX is due to a defect in double-strand break repair. Radiother. Oncol. 90, 257–264 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. A.C. Parplys, E. Petermann, C. Petersen, E. Dikomey, K. Borgmann, DNA damage by X-rays and their impact on replication processes. Radiother. Oncol. 102, 466–471 (2012)

    Article  PubMed  CAS  Google Scholar 

  8. C.J. Lord, A. Ashworth, The DNA damage response and cancer therapy. Nature 481, 287–294 (2012)

    Article  PubMed  CAS  Google Scholar 

  9. P.A. Jeggo, V. Geuting, M. Löbrich, The role of homologous recombination in radiation-induced double-strand break repair. Radiother. Oncol. 101, 7–12 (2011)

    Article  PubMed  CAS  Google Scholar 

  10. M. Pérez-Caro, C. Bermejo-Rodríguez, I. González-Herrero, M. Sánchez-Beato, M.A. Piris, I. Sánchez-García, Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2). Br. J. Cancer 98, 480–488 (2008)

    Article  PubMed  Google Scholar 

  11. M.A. Nieto, The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155–166 (2002)

    Article  PubMed  CAS  Google Scholar 

  12. M.A. Ros, M. Sefton, M.A. Nieto, Slug, a zinc finger gene previously implicated in the early patterning of the mesoderm and the neural crest, is also involved in chick limb development. Development 124, 1821–1829 (1997)

    PubMed  CAS  Google Scholar 

  13. P. Savagner, K.M. Yamada, J.P. Thiery, The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell. Biol. 137, 1403–1419 (1997)

    Article  PubMed  CAS  Google Scholar 

  14. P.B. Gupta, C. Kuperwasser, J.P. Brunet, S. Ramaswamy, W.L. Kuo, J.W. Gray, S.P. Naber, R.A. Weinberg, The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat. Genet. 37, 1047–1054 (2005)

    Article  PubMed  CAS  Google Scholar 

  15. N.K.K.A. Kurrey, S.A. Bapat, Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol. Oncol. 97, 155–165 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. T.A. Martin, A. Goyal, G. Watkins, W.G. Jiang, Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann. Surg. Oncol. 12, 488–496 (2005)

    Article  PubMed  Google Scholar 

  17. P.A. Pérez-Mancera, I. González-Herrero, M. Pérez-Caro, N. Gutiérrez-Cianca, T. Flores, A. Gutiérrez-Adán, B. Pintado, M. Sánchez-Martín, I. Sánchez-García, SLUG in cancer development. Oncogene 24, 3073–3082 (2005)

    Article  PubMed  Google Scholar 

  18. N. Fenouille, M. Tichet, M. Dufies, A. Pottier, A. Mogha, J.K. Soo, S. Rocchi, A. Mallavialle, M.D. Galibert, A. Khammari, J.P. Lacour, R. Ballotti, M. Deckert, S. Tartare-Deckert, The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One 7, e40378 (2012)

    Article  PubMed  CAS  Google Scholar 

  19. M. Kajita, K.N. McClinic, P.A. Wade, Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol. Cell. Biol. 24, 7559–7566 (2004)

    Article  PubMed  CAS  Google Scholar 

  20. A. Inoue, M.G. Seidel, W. Wu, S. Kamizono, A.A. Ferrando, R.T. Bronson, H. Iwasaki, K. Akashi, A. Morimoto, J.K. Hitzler, T.I. Pestina, C.W. Jackson, R. Tanaka, M.J. Chong, P.J. McKinnon, T. Inukai, G.C. Grosveld, A.T. Look, Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell. 2, 279–288 (2002)

    Article  PubMed  Google Scholar 

  21. J. Pérez-Losada, M. Sánchez-Martín, M. Pérez-Caro, P.A. Pérez-Mancera, I. Sánchez-García, The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene 22, 4205–4211 (2003)

    Article  PubMed  Google Scholar 

  22. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T. Warren, H. Bokesch, S. Kenney, M.R. Boyd, New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107–1112 (1990)

    Article  PubMed  CAS  Google Scholar 

  23. B. Pauwels, A.E. Korst, C.M. de Pooter, G.G. Pattyn, H.A. Lambrechts, M.F. Baay, F. Lardon, J.B. Vermorken, Comparison of the sulforhodamine B assay and the clonogenic assay for in vitro chemoradiation studies. Cancer Chemother. Pharmacol. 51, 221–226 (2003)

    PubMed  CAS  Google Scholar 

  24. E.K. Rofstad, Radiation biology of malignant melanoma. Acta Radiol. Oncol. 25, 1–10 (1986)

    Article  PubMed  CAS  Google Scholar 

  25. M.S. Soengas, S.W. Lowe, Apoptosis and melanoma chemoresistance. Oncogene 22, 3138–3151 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. K. Zhang, B. Zhang, Y. Lu, C. Sun, W. Zhao, X. Jiao, J. Hu, P. Mu, H. Lu, C. Zhou, Slug inhibition upregulates radiation-induced PUMA activity leading to apoptosis in cholangiocarcinomas. Med. Oncol. 28(Suppl 1), S301–S309 (2011)

    Article  PubMed  Google Scholar 

  27. N. Miyoshi, H. Ishii, K. Mimori, F. Tanaka, T. Hitora, M. Tei, M. Sekimoto, Y. Doki, M. Mori, TGM2 is a novel marker for prognosis and therapeutic target in colorectal cancer. Ann. Surg. Oncol. 17, 967–972 (2010)

    Article  PubMed  Google Scholar 

  28. A. Verma, K. Mehta, Transglutaminase-mediated activation of nuclear transcription factor-kappaB in cancer cells: a new therapeutic opportunity. Curr. Cancer Drug Targets 7, 559–565 (2007)

    Article  PubMed  CAS  Google Scholar 

  29. J.F. Herman, L.S. Mangala, K. Mehta, Implications of increased tissue transglutaminase (TG2) expression in drug-resistant breast cancer (MCF-7) cells. Oncogene 25, 3049–3058 (2006)

    Article  PubMed  CAS  Google Scholar 

  30. A. Kumar, J. Xu, S. Brady, H. Gao, D. Yu, J. Reuben, K. Mehta, Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One 50, e13390 (2010)

    Article  Google Scholar 

  31. J.Y. Fok, S. Ekmekcioglu, K. Mehta, Implications of tissue transglutaminase expression in malignant melanoma. Mol. Cancer Ther. 5, 1493–1503 (2006)

    Article  PubMed  CAS  Google Scholar 

  32. W.S. Wu, S. Heinrichs, D. Xu, S.P. Garrison, G.P. Zambetti, J.M. Adams, A.T. Look, Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123, 641–653 (2005)

    Article  PubMed  CAS  Google Scholar 

  33. I. Vannini, M. Bonafe, A. Tesei, M. Rosetti, F. Fabbri, G. Storci, P. Ulivi, G. Brigliadori, D. Amadori, W. Zoli, Short interfering RNA directed against the SLUG gene increases cell death induction in human melanoma cell lines exposed to cisplatin and fotemustine. Cell. Oncol. 29, 279–287 (2007)

    PubMed  CAS  Google Scholar 

  34. K. Zhang, D. Chen, X. Wang, S. Zhang, J. Wang, Y. Gao, B. Yan, RNA interference targeting Slug increases cholangiocarcinoma cell sensitivity to cisplatin via upregulating PUMA. Int. J. Mol. Sci. 12, 385–400 (2011)

    Article  PubMed  CAS  Google Scholar 

  35. H.S. Cha, E.K. Bae, J.K. Ahn, J. Lee, K.S. Ahn, E.M. Koh, Slug suppression induces apoptosis via Puma transactivation in rheumatoid arthritis fibroblast-like synoviocytes treated with hydrogen peroxide. Exp. Mol. Med. 42, 428–436 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Ursula Elbling for editing the manuscript.

Conflicts of interest

There are no conflicts of interest to declare.

Funding

This work was supported by a grant from the Italian Ministry of Health (RO Strategici 11/07) “p53 family interaction network as a target of antitumoral peptide therapy”. The funding body did not have a role in the study design, in the collection, analysis and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wainer Zoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arienti, C., Tesei, A., Carloni, S. et al. SLUG silencing increases radiosensitivity of melanoma cells in vitro. Cell Oncol. 36, 131–139 (2013). https://doi.org/10.1007/s13402-012-0120-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-012-0120-6

Keywords

Navigation