Skip to main content

Advertisement

Log in

miR-15a/16-1 influences BCL2 expression in keratocystic odontogenic tumors

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

A keratocystic odontogenic tumor (KCOT) is a benign destructive recurrent odontogenic cystic neoplasm. The microRNAs (miRNAs) miR-15a and miR-16-1 function as negative regulators of the anti-apoptotic gene BCL2 at the post-transcriptional level. Notably, high Bcl-2 immunoexpression is found in the epithelial lining of KCOTs, while the loss of Bcl-2 immunopositive cells is observed in marsupialized cysts. The purpose of this study was to investigate whether the transcription of miR-15a and miR-16-1 is altered in KCOTs and whether it is associated with BCL2 gene expression in such lesions.

Methods

Using qRT-PCR and immunohistochemical analyses, we examined miR-15a/16-1 and BCL2 gene expression in KCOTs. The impact of miR-15a/16-1 expression on BCL2 gene translation was investigated by in vitro studies using primary KCOT culture cells.

Results

Using qRT-PCR, we observed miR-15a and/or miR-16-1 downregulation in the majority of the KCOT samples (24 of 28). We also observed higher BCL2 mRNA expression in 19 of 20 KCOT frozen samples and moderate to high Bcl-2 immunopositivity in the basal layer cells of 16 of 18 paraffin embedded KCOTs (median: 42.6 %). In vitro over-expression of miR-15a/16-1 in human KCOT-1 primary cell cultures resulted in a decrease in Bcl-2 protein expression. Furthermore, all five paired KCOTs collected before and after marsupialization treatment exhibited an increase in miR-15a after the procedure.

Conclusions

Our results suggest that KCOT neoplastic cells exhibit an anti-apoptotic profile that may be related to lower miR-15a/16-1 expression. Additionally, we demonstrated that miRNA expression increases after marsupialization, implicating an etiological and therapeutic role of miRNAs in KCOT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.P. Philipsen, in World Health Organization classification of tumours—Pathology and genetics of head and neck tumours, ed. By L. Barnes et al. (IARC Press, Lyon, 2005), p. 306

  2. C.C. Rachanis, M. Shear, Age-standardized incidence rates of primordial cyst (keratocyst) on the Witwatersrand. Community Dent Oral Epidemiol. 6, 296–299 (1978)

    Article  PubMed  CAS  Google Scholar 

  3. M. Shear, P.M. Speight, Cysts of the Oral and Maxillofacial Regions (Blackwell Munksgaard, Oxford, 2007), p. 8

    Book  Google Scholar 

  4. L. Lo, L. Muzio, Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis. 3, 32 (2008)

    Article  Google Scholar 

  5. N. Nakamura, T. Mitsuyasu, Y. Mitsuyasu, T. Taketomi, Y. Higuchi, M. Ohishi, Marsupialization for odontogenic keratocysts: long-term follow-up analysis of the effects and changes in growth characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 5, 543–553 (2002)

    Google Scholar 

  6. M.A. Pogrel, Decompression and marsupialization as a treatment for the odontogenic keratocyst. Oral Maxillofac Surg Clin North Am. 3, 415–427 (2003)

    Article  Google Scholar 

  7. C.C. Gomes, M.G. Diniz, R.S. Gomez, Review of the molecular pathogenesis of the odontogenic keratocyst. Oral Oncol. 12, 1011–1014 (2009)

    Article  Google Scholar 

  8. L. Lo Muzio, S. Staibano, G. Pannone, P. Bucci, P.F. Nocini, E. Bucci, G. De Rosa, Expression of cell cycle and apoptosis-related proteins in sporadic odontogenic keratocysts and odontogenic keratocysts associated with the nevoid basal cell carcinoma syndrome. J. Dent. Res. 7, 1345–1353 (1999)

    Google Scholar 

  9. A. Piattelli, M. Fioroni, C. Rubini, Differentiation of odontogenic keratocysts from other odontogenic cysts by the expression of bcl-2 immunoreactivity. Oral Oncol. 5, 404–407 (1998)

    Article  Google Scholar 

  10. D. Hockenbery, G. Nuñez, C. Milliman, R.D. Schreiber, S.J. Korsmeyer, Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 6299, 334–336 (1990)

    Article  Google Scholar 

  11. D.L. Vaux, S. Cory, J.M. Adams, Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 6189, 440–442 (1988)

    Article  Google Scholar 

  12. Y. Pommier, O. Sordet, S. Antony, R.L. Hayward, K.W. Kohn, Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 16, 2934–2949 (2004)

    Article  Google Scholar 

  13. T.G. Cotter, Apoptosis and cancer: the genesis of a research field. Nat. Rev. Cancer 7, 501–507 (2009)

    Article  Google Scholar 

  14. A. Cimmino, G.A Calin, M. Fabbri, M.V. Iorio, M. Ferracin, M. Shimizu, S.E. Wojcik et al., miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 39, 13944–9 (2005). Erratum in: Proc Natl Acad Sci U S A. 103, 2464 (2006)

    Google Scholar 

  15. M. Hanada, D. Delia, A. Aiello, E. Stadtmauer, J.C. Reed, Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 6, 1820–1828 (1993)

    Google Scholar 

  16. Y. Tsujimoto, L.R. Finger, J. Yunis, Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 4678, 1097–1099 (1984)

    Article  Google Scholar 

  17. V. Ambros, The functions of animal microRNAs. Nature 7006, 350–355 (2004)

    Article  Google Scholar 

  18. C.C. Gomes, R.S. Gomez, MicroRNA and oral cancer: Future perspectives. Oral Oncol. 10, 910–914 (2008)

    Article  Google Scholar 

  19. C. Ren, M.G. Diniz, C. Piazza, H.M. Amm, D.L. Rollins, H. Rivera, P. Devilliers et al., Differential enamel and osteogenic gene expression profiles in odontogenic tumors. Cells Tissues Organs. 194, 296–301 (2011)

    Article  PubMed  CAS  Google Scholar 

  20. R.I. Aqeilan, miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death and Differ. 17, 215–220 (2010)

    Article  CAS  Google Scholar 

  21. K. Kimi, H. Kumamoto, K. Ooya, K. Moteg, Analysis of apoptosis-related factors and apoptotic cells in lining epithelium of odontogenic keratocysts. Oral Med Pathol. 5, 35–40 (2000)

    Article  Google Scholar 

  22. P.H. Olsen, V. Ambros, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 2, 671–680 (1999)

    Article  Google Scholar 

  23. R. Singh, N. Saini, Downregulation of BCL2 by miRNAs augments drug-induced apoptosis—a combined computational and experimental approach. J Cell Sci. 6, 1568–1578 (2012)

    Article  Google Scholar 

  24. G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler et al., Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 24, 15524–15529 (2002)

    Article  Google Scholar 

  25. D. Bonci, V. Coppola, M. Musumeci, A. Addario, R. Giuffrida, L. Memeo, L. D’Urso et al., The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 11, 1271–1277 (2008)

    Article  Google Scholar 

  26. N. Bandi, S. Zbinden, M. Gugger, M. Arnold, V. Kocher, L. Hasan, A. Kappeler, T. Brunner, E. Vassella, miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 13, 5553–5559 (2009)

    Article  Google Scholar 

  27. P.S. Linsley, J. Schelter, J. Burchard, M. Kibukawa, M.M. Martin, S.R. Bartz, J.M. Johnson, J.M. Cummins, C.K. Raymond, H. Dai, N. Chau, M. Cleary, A.L. Jackson, M. Carleton, L. Lim, Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 6, 2240–2252 (2007)

    Article  Google Scholar 

  28. Q. Liu, H. Fu, F. Sun, H. Zhang, Y. Tie, J. Zhu, R. Xing, Z. Sun, X. Zheng, miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 16, 5391–5404 (2008)

    Article  Google Scholar 

  29. M.A. Pogrel, Treatment of keratocysts: the case for decompression and marsupialization. J Oral Maxillofac Surg. 11, 1667–1673 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Grants from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Pró-Reitoria de Pesquisa (Universidade Federal de Minas Gerais), Brazil, and the Institute of Oral Health Research at the University of Alabama at Birmingham (UAB-SOD/IOHR), USA, funded this study. We thank Dr. George Calin who provided the pSR-15/16 vectors.

Conflict of interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Santiago Gomez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz, M.G., Gomes, C.C., de Castro, W.H. et al. miR-15a/16-1 influences BCL2 expression in keratocystic odontogenic tumors. Cell Oncol. 35, 285–291 (2012). https://doi.org/10.1007/s13402-012-0087-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-012-0087-3

Keywords

Navigation