Skip to main content

Advertisement

Log in

An expression signature of phenotypic resistance to hepatocellular carcinoma identified by cross-species gene expression analysis

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background and aims

Hepatocarcinogenesis is under polygenic control. We analyzed gene expression patterns of dysplastic liver nodules (DNs) and hepatocellular carcinomas (HCCs) chemically-induced in F344 and BN rats, respectively susceptible and resistant to hepatocarcinogenesis.

Methods

Expression profiles were performed by microarray and validated by quantitative RT-PCR and Western blot.

Results

Cluster analysis revealed two distinctive gene expression patterns, the first of which included normal liver of both strains and BN nodules, and the second one F344 nodules and HCC of both strains. We identified a signature predicting DN and HCC progression, characterized by highest expression of oncosuppressors Csmd1, Dmbt1, Dusp1, and Gnmt, in DNs, and Bhmt, Dmbt1, Dusp1, Gadd45g, Gnmt, Napsa, Pp2ca, and Ptpn13 in HCCs of resistant rats. Integrated gene expression data revealed highest expression of proliferation-related CTGF, c-MYC, and PCNA, and lowest expression of BHMT, DMBT1, DUSP1, GADD45g, and GNMT, in more aggressive rat and human HCC. BHMT, DUSP1, and GADD45g expression predicted patients’ survival.

Conclusions

Our results disclose, for the first time, a major role of oncosuppressor genes as effectors of genetic resistance to hepatocarcinogenesis. Comparative functional genomic analysis allowed discovering an evolutionarily conserved gene expression signature discriminating HCC with different propensity to progression in rat and human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Anxa5:

Annexin5

Bhmt:

Betaine-homocysteine methyltransferase

BN:

Brown Norway

Bzrp:

Benzodiazepine receptor, peripheral

Cxcl12:

Chemokine, cxc motif, ligand 12

Ctgf:

Connective tissue growth factor

Csmd1:

CUB and SUSHI multiple domain protein 1

Cyp7B1:

Cytochrome P450 7B1

Decr1:

2,4-dienoyl CoA reductase 1

DN:

Dysplastic nodule

Dmbt1:

Deleted in malignant brain tumors 1

Dusp1:

Dual specificity phosphatase 1

Enc1:

Ectodermal-neural cortex 1

ERK:

Extracellular signal-regulated kinase

F344:

Fisher 344

Fath1:

Fat tumor suppressor homologue 1

Fgfr:

Fibroblast growth factor receptor

FoxM1:

Forkhead box M1B

G0s2:

G0-G1 switch gene 2

Gadd45b:

Growth arrest and DNA-damage-inducible-β

Gadd45g:

Gadd45-γ

Gnmt:

Glycine N-methyltransferase

Gng10:

G protein gamma 10

Gpx2:

Glutathione peroxidase 2

Gsta2:

Gutathione-S-transferase, alpha2

HCC:

Hepatocellular carcinoma

HCCA:

HCC with poorer prognosis

HCCB:

HCC with better prognosis

Igfbp:

Insulin-like growth factor binding protein

Klf6:

Kruppel-like suppressor 6

Lcn2:

Lipocalin 2

Mat1A:

Methyl adenosyltransferase 1A

Napsa:

Napsin A

Nqo1:

NAD(P)H dehydrogenase, quinone 1

P2ry2:

Purinergic receptor P2Y

Pcna:

Proliferating cell nuclear antigen

Pckdbp:

Protein kinase δ binding protein

Pdgf-α:

Platelet-derived growth factor-alpha

Pp2A:

Protein phosphatase 2A

Prkci:

Protein kinase C, iota

Ptpn13:

Protein tyrosine phosphatase, non-receptor type 13

qPCR:

Quantitative real-time reverse-transcription polymerase chain reaction; Rin3 Ras and Rab interactor 3

Rapgef2:

Rap guanine nucleotide exchange factor 2

SAM:

S- adenosylmethionine

References

  1. F. Feo, M.R. De Miglio, M.M. Simile, M.R. Muroni, D.F. Calvisi, M. Frau et al., Hepatocellular carcinoma as a complex polygenic disease. Interpretative analysis of recent developments on genetic predisposition. Biochim. Biophys. Acta Canc. Rev. 1765, 126–147 (2006)

    CAS  Google Scholar 

  2. D.B. Solt, A. Medline, E. Farber, Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis. Am. J. Pathol. 88, 595–618 (1997)

    Google Scholar 

  3. R.M. Pascale, M.M. Simile, D.F. Calvisi, M. Frau, M.R. Muroni, M.A. Seddaiu, L. Daino, M.D. Muntoni, M.R. De Miglio, S.S. Thorgeirsson, F. Feo, Role of the modulation of p16INK4A and E2f4 activity by Cdc37, Hsp90 and Crm1 in the phenotypic behavior of preneoplastic and neoplastic liver lesions of rat strains with different genetic predisposition to hepatocarcinogenesis and in human liver cancer. Hepatology 42, 1310–1319 (2005)

    Article  PubMed  CAS  Google Scholar 

  4. M. Frau, S. Ladu, D.F. Calvisi, M.M. Simile, P. Bonelli, L. Daino, M.L. Tomasi, M.A. Seddaiu, F. Feo, R.M. Pascale, Mybl2 expression is under genetic control and contributes to determine a hepatocellular carcinoma susceptible phenotype. J. Hepatol. 55, 111–119 (2011)

    Article  PubMed  CAS  Google Scholar 

  5. M. Frau, F. Biasi, F. Feo, R.M. Pascale, Prognostic markers and putative therapeutic targets for hepatocellular carcinoma. Mol. Aspects Med. 31, 179–193 (2010)

    Article  PubMed  CAS  Google Scholar 

  6. D.F. Calvisi, M.M. Simile, S. Ladu, M. Frau, M. Evert, M.L. Tomasi, M.I. Demartis, L. Daino, M.A. Seddaiu, S. Brozzetti, F. Feo, R.M. Pascale, Activation of MYBL2-LIN9 complex contributes to human hepatocarcinogenesis and identifies a subset of HCC with mutant p53. Hepatology 53, 1226–1236 (2011)

    Article  PubMed  CAS  Google Scholar 

  7. J.S. Lee, S.S. Thorgeirsson, Comparative and integrative functional genomics of HCC. Oncogene 25, 3089–3801 (2006)

    Google Scholar 

  8. O.M. Andrisani, L. Studach, P. Merle, Gene signatures in hepatocellular carcinoma (HCC). Semin. Cancer Biol. 21, 4–9 (2011)

    Article  PubMed  CAS  Google Scholar 

  9. M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, M. Radmacher, R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty, E. Wang, F. Marincola, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock, J. Carpten, E. Gillanders, D. Leja, K. Dietrich, C. Beaudry, M. Berens, D. Alberts, V. Sondak, Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000)

    Article  PubMed  CAS  Google Scholar 

  10. J.I. Pérez-Carreón, C. López-García, S. Fattel-Fazenda, E. Arce-Popoca, L. Alemán-Lazarini, S. Hernández-García, V. Le Berre, S. Sokol, J.M. Francois, S. Villa-Treviño, Gene expression profile related to the progression of preneoplastic nodules toward hepatocellular carcinoma in rats. Neoplasia 8, 373–383 (2006)

    Article  PubMed  Google Scholar 

  11. J.B. Andersen, R. Loi, A. Perra, G.M. Ledda-Columbano, A. Columbano, S.S. Thorgeirsson, Progenitor-derived hepatocellular carcinoma model in the rat. Hepatology 51, 1401–1409 (2010)

    Article  PubMed  Google Scholar 

  12. R.A. Squire, M.H. Levitt, Report of a workshop on classification of specific hepatocellular lesions in rats. Cancer Res. 35, 3214–3223 (1975)

    PubMed  CAS  Google Scholar 

  13. International Working Party, Terminology of nodular hepatocellular lesions. Hepatology 22, 983–993 (1995)

    Google Scholar 

  14. M. Sakamoto, Early HCC: diagnosis and molecular markers. J. Gastroenterol. 44(Suppl XIX), 108–111 (2009)

    Article  PubMed  CAS  Google Scholar 

  15. J.S. Lee, I.S. Chu, J. Heo, D.F. Calvisi, Z. Sun, T. Roskams, A. Durnez, A.J. Demetris, S.S. Thorgeirsson, Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40, 667–676 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. J.S. Lee, I.S. Chu, A. Mikaelyan, D.F. Calvisi, J. Heo, J.K. Reddy, S.S. Thorgeirsson, Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat. Genet. 36, 1306–1311 (2004)

    Article  PubMed  CAS  Google Scholar 

  17. K. Ellwood-Yen, T.G. Graeber, J. Wongvipat, M.L. Iruela-Arispe, J. Zhang, R. Matusik, G.V. Thomas, C.L. Sawyers, Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003)

    Article  PubMed  CAS  Google Scholar 

  18. A. Sweet-Cordero, S. Mukherjee, A. Subramanian, H. You, J.J. Roix, C. Ladd-Acosta, J. Mesirov, T.R. Golub, T. Jacks, An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat. Genet. 37, 48–55 (2005)

    PubMed  CAS  Google Scholar 

  19. P. Kaposi-Novak, L. Libbrecht, H.G. Woo, Y.H. Lee, N.C. Sears, C. Coulouarn, E.A. Conner, V.M. Factor, T. Roskams, S.S. Thorgeirsson, Central role of c-Myc during malignant conversion in human hepatocarcinogenesis. Cancer Res. 69, 2775–2782 (2009)

    Article  PubMed  CAS  Google Scholar 

  20. A.G. Renehan, M. Harvie, A. Howell, Insulin-like growth factor (IGF)-I, IGF binding protein-3, and breast cancer risk: eight years on. Endocr. Relat. Canc. 13, 273–278 (2006)

    Article  CAS  Google Scholar 

  21. P. Bioulac-Sage, S. Rebouissou, C. Thomas, J.F. Blanc, J. Saric, A. Sa Cunha, A. Rullier, G. Cubel, G. Couchy, S. Imbeaud, C. Balabaud, J. Zucman-Rossi, Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology 46, 740–748 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. D.F. Calvisi, S. Ladu, F. Pinna, M. Frau, M.L. Tomasi, M. Sini, M.M. Simile, P. Bonelli, M.R. Muroni, M.A. Seddaiu, D.S. Lim, F. Feo, R.M. Pascale, SKP2 and CKS1 promote degradation of cell cycle regulators and are associated with hepatocellular carcinoma prognosis. Gastroenterology 137, 1816–1826 (2009)

    Article  PubMed  CAS  Google Scholar 

  23. M. Kamal, A.M. Shaaban, L. Zhang, C. Walker, S. Gray, N. Thakker, C. Toomes, V. Speirs, S.M. Bell, Loss of CSMD1 expression is associated with high tumour grade and poor survival in invasive ductal breast carcinoma. Breast Canc. Res. Treat. 121, 555–563 (2010)

    Article  CAS  Google Scholar 

  24. S.C. Lu, J.M. Mato, S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J. Gastroenterol. Hepatol. 23(Suppl 1), 73–77 (2008)

    Article  Google Scholar 

  25. D.F. Calvisi, F. Pinna, F. Meloni, S. Ladu, R. Pellegrino, M. Sini, L. Daino, M.M. Simile, M.R. De Miglio, P. Virdis, M. Frau, M.L. Tomasi, M.A. Seddaiu, M.R. Muroni, F. Feo, R.M. Pascale, Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma. Cancer Res. 68, 4192–4200 (2008)

    Article  PubMed  CAS  Google Scholar 

  26. J. Mollenhauer, B. Helmke, D. Medina, G. Bergmann, N. Gassler, H. Müller, S. Lyer, L. Diedrichs, M. Renner, R. Wittig, S. Blaich, U. Hamann, J. Madsen, U. Holmskov, F. Bikker, A. Ligtenberg, A. Carlén, J. Olsson, H.F. Otto, B. O’Malley, A. Poustka, Carcinogen inducibility in vivo and down-regulation of DMBT1 during breast carcinogenesis. Genes Chrom. Cancer 39, 185–194 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. D.F. Calvisi, M.M. Simile, S. Ladu, R. Pellegrino, V. De Murtas, F. Pinna, M.L. Tomasi, M. Frau, P. Virdis, M.R. De Miglio, M.R. Muroni, R.M. Pascale, F. Feo, Altered methionine metabolism and global DNA methylation in liver cancer: relationship with genomic instability and prognosis. Int. J. Cancer 121, 2410–2420 (2007)

    Article  PubMed  CAS  Google Scholar 

  28. N. Zhu, Y. Shao, L. Xu, L. Yu, L. Sun, Gadd45-alpha and Gadd45-gamma utilize p38 and JNK signaling pathways to induce cell cycle G2/M arrest in Hep-G2 hepatoma cells. Mol. Biol. Rep. 36, 2075–2085 (2009)

    Article  PubMed  CAS  Google Scholar 

  29. T. Ueno, G. Elmberger, T.E. Weaver, M. Toi, S. Linder, The aspartic protease napsin A suppresses tumor growth independent of its catalytic activity. Lab. Investig. 88, 256–263 (2008)

    Article  PubMed  CAS  Google Scholar 

  30. S.H. Yeh, D.C. Wu, C.Y. Tsai, T.J. Kuo, W.C. Yu, Y.S. Chang, C.L. Chen, C.F. Chang, D.S. Chen, P.J. Chen, Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clin. Cancer Res. 12, 1097–1108 (2006)

    Article  PubMed  CAS  Google Scholar 

  31. P.J. Eichhorn, M.P. Creyghton, R. Bernards, Protein phosphatase 2A regulatory subunits and cancer. Biochim. Biophys. Acta 179, 1–15 (2009)

    Google Scholar 

  32. T.L. Tseng, Y.P. Shih, Y.C. Huang, C.K. Wang, P.H. Chen, J.G. Chang, K.T. Yeh, Y.M. Chen, K.H. Buetow, Genotypic and phenotypic characterization of a putative tumor susceptibility gene, GNMT, in liver cancer. Cancer Res. 63, 647–654 (2003)

    PubMed  CAS  Google Scholar 

  33. A.C. Blackburn, L.Z. Hill, A.L. Roberts, J. Wang, D. Aud, J. Jung, T. Nikolcheva, J. Allard, G. Peltz, C.N. Otis, Q.J. Cao, R.S. Ricketts, S.P. Naber, J. Mollenhauer, A. Poustka, D. Malamud, D.J. Jerry, Genetic mapping in mice identifies DMBT1 as a candidate modifier of mammary tumors and breast cancer risk. Am. J. Pathol. 170, 2030–2041 (2007)

    Article  PubMed  CAS  Google Scholar 

  34. P. Parekh, K.V. Rao, Overexpression of cyclin D1 is associated with elevated levels of MAP kinases, Akt and Pak1 during diethylnitrosamine-induced progressive liver carcinogenesis. Cell Biol. Int. 31, 35–43 (2007)

    Article  PubMed  CAS  Google Scholar 

  35. V. Factor, A.L. Oliver, G.R. Panta, S.S. Thorgeirsson, G.E. Sonenshein, M. Arsura, Roles of Akt/PKB and IKK complex in constitutive induction of NF-kappaB in hepatocellular carcinomas of transforming growth factor alpha/c-myc transgenic mice. Hepatology 34, 32–41 (2001)

    Article  PubMed  CAS  Google Scholar 

  36. A. Villanueva, P. Newell, D.Y. Chiang, S.L. Friedman, J.M. Llovet, Genomics and signaling pathways in hepatocellular carcinoma. Semin. Liver Dis. 27, 55–76 (2007)

    Article  PubMed  CAS  Google Scholar 

  37. A. Mazzocca, E. Fransvea, F. Dituri, L. Lupo, S. Antonaci, G. Giannelli, Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology 51, 523–534 (2010)

    Article  PubMed  CAS  Google Scholar 

  38. M.M. Simile, M.R. De Miglio, M.R. Muroni, S. Pusceddu, D. Calvisi, A. Carru, M.A. Seddaiu, L. Daino, L. Deiana, R.M. Pascale, F. Feo, Down-regulation of c-myc and Cyclin D1 genes by antisense oligodeoxy nucleotides inhibits the expression of E2F1 and in vitro growth of HepG2 and Morris 5123 liver cancer cells. Carcinogenesis 25, 333–341 (2004)

    Article  PubMed  CAS  Google Scholar 

  39. C.M. Shachaf, A.M. Kopelman, C. Arvanitis, A. Karlsson, S. Beer, S. Mandl, M.H. Bachman, A.D. Borowsky, B. Ruebner, R.D. Cardiff, Q. Yang, J.M. Bishop, C.H. Contag, D.W. Felsher, MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004)

    Article  PubMed  CAS  Google Scholar 

  40. M.A. Avila, C. Berasain, L. Torres, A. Martín-Duce, F.J. Corrales, H. Yang, J. Prieto, S.C. Lu, J. Caballería, J. Rodés, J.M. Mato, Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J. Hepatol. 33, 907–914 (2000)

    Article  PubMed  CAS  Google Scholar 

  41. J. Du, M. Guan, J. Fan, H. Jiang, Loss of DMBT1 expression in human prostate cancer and its correlation with clinical progressive features. Urology 77(509), e9–e13 (2011)

    PubMed  Google Scholar 

  42. M. Sasaki, S.F. Huang, M.F. Chen, Y.Y. Jan, T.S. Yeh, A. Ishikawa, J. Mollenhauer, A. Poustka, K. Tsuneyama, Y. Nimura, K. Oda, Y. Nakanuma, Decrease of deleted in malignant brain tumour-1 (DMBT-1) expression is a crucial late event in intrahepatic cholangiocarcinoma. Histopathology 43, 340–346 (2003)

    Article  PubMed  CAS  Google Scholar 

  43. J.S. Lee, J. Heo, L. Libbrecht, I.S. Chu, P. Kaposi-Novak, D.F. Calvisi, A. Mikaelyan, L.R. Roberts, A.J. Demetris, Z. Sun, F. Nevens, T. Roskams, S.S. Thorgeirsson, A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12, 410–416 (2006)

    Article  PubMed  CAS  Google Scholar 

  44. P. Kaposi-Novak, J.S. Lee, L. Gòmez-Quiroz, C. Coulouarn, V.M. Factor, S.S. Thorgeirsson, Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J. Clin. Invest. 116, 1582–1595 (2006)

    Article  PubMed  CAS  Google Scholar 

  45. Y. Hoshida, A. Villanueva, M. Kobayashi, J. Peix, D.Y. Chiang, A. Camargo, S. Gupta, J. Moore, M.J. Wrobel, J. Lerner, M. Reich, J.A. Chan, J.N. Glickman, K. Ikeda, M. Hashimoto, G. Watanabe, M.G. Daidone, S. Roayaie, M. Schwartz, S. Thung, H.B. Salvesen, S. Gabriel, V. Mazzaferro, J. Bruix, S.L. Friedman, H. Kumada, J.M. Llovet, T.R. Golub, Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 359, 1995–2004 (2008)

    Article  PubMed  CAS  Google Scholar 

  46. J.M. Llovet, J. Bruix, Novel advancements in the management of hepatocellular carcinoma in 2008. J. Hepatol. 48(Suppl 1), S20–S37 (2008)

    Article  PubMed  CAS  Google Scholar 

  47. S.W. Nam, J.Y. Park, A. Ramasamy, S. Shevade, A. Islam, P.M. Long, C.K. Park, S.E. Park, S.Y. Kim, S.H. Lee, W.S. Park, N.J. Yoo, E.T. Liu, L.D. Miller, J.Y. Lee, Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology 42, 809–818 (2005)

    Article  PubMed  CAS  Google Scholar 

  48. J.M. Llovet, Y. Chen, E. Wurmbach, S. Roayaie, M.I. Fiel, M. Schwartz, S.N. Thung, G. Khitrov, W. Zhang, A. Villanueva, C. Battiston, V. Mazzaferro, J. Bruix, S. Waxman, S.L. Friedman, A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology 131, 1758–1767 (2006)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants from Associazione Italiana Ricerche sul Cancro (IG8952), Ministero Università e Ricerca (PRIN 2009), Regione Autonoma Sardegna, Fondazione Banco di Sardegna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Pascale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 49 kb)

Supplementary Table S1

Clinicopathological Features of HCC Patients (DOC 36 kb)

Supplementary Table S2

Gene expression profile of dysplastic nodule and hepatocellular carcinoma of F344 rats. (DOC 475 kb)

Supplementary Table S3

Gene expression profile of dysplastic nodule and hepatocellular carcinoma of BN rats (DOC 529 kb)

Supplementary Table S4

Gene features significantly different between BN and F344 dysplastic nodules (DOC 182 kb)

Supplementary Table S5

Gene features significantly different between BN and F344 HCCs (DOC 144 kb)

Figure S1

Hematoxylin-eosin (H&E) and reticulin straining, and glutamine synthase (GS) immunostaining of DN and HCC from F344 and BN rats. DNs were collected from both strains 32 weeks after initiation, and HCC were collected from F344 and BN rats at 50 and 65 weeks, respectively. Note the presence of partially preserved reticulin fibers array in DNs and cytoplasmic GS-positivity in HCC. Abbreviaitons: HGDN, high-grade dysplastic nodule; LGDN, low-.grade dysplastic nodule; MDHCC, moderately differentiated hepatocellular carcinoma; WDHCC, well differentiated hepatocellular casrcinoma. Original magnification: x400. (TIFF 28690 kb)

Figure S2

Expression patterns of differentially expressed genes between BN and F344 nodules, out of 22,575 gene features, 91 differently expressed gene features were selected for cluster analysis (p < 0.001, t-test between BN vs F344 DNs). The two groups compared in t-test are indicated by the blue segments. The data were presented in a matrix format in which columns represent each tissue and rows represent individual genes. (TIFF 16077 kb)

Figure S3

Expression patterns of differentially expressed genes between BN and F344 tumors. Out of 22,575 gene features, 55 differentially expressed gene features were selected for cluster analysis (p < 0.001, t-test between BN tumor vs F344 tumor). The two groups compared in t-test are shown by blue segments. The data are presented in a matrix format in which columns represent each tissue and rows represent individual genes. (TIFF 13592 kb)

Figure S4

Schematic representation of the effects of some oncosuppressor genes upregulated in DN and/or HCC of BN rats. The effects of the oncosuppressors Dusp1, Pp2ca, Ptpten13, Bhmt, Gnmt, Gadd45g, are shown by red arrows. Blunt arrows indicated inhibition. DM—glycine, dimethyl-glycine. (TIFF 4614 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frau, M., Simile, M.M., Tomasi, M.L. et al. An expression signature of phenotypic resistance to hepatocellular carcinoma identified by cross-species gene expression analysis. Cell Oncol. 35, 163–173 (2012). https://doi.org/10.1007/s13402-011-0067-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-011-0067-z

Keywords

Navigation