Skip to main content
Log in

Biosynthesis and characterization of novel nanocomposite ZnO/BaMg2 efficiency for high-speed adsorption of AZO dye

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, a new ZnO/BaMg2 nanocomposite was synthesized, using the green synthesis method in which lemon peel extract was used as a reducing agent to form ZnO/BaMg2 nanocomposites. The synthesized nanoparticles were characterized by visible and ultraviolet light spectroscopy showing absorption peaks at around 277 nm. The chemical bond configurations of ZnO/BaMg2 were confirmed by Fourier transform infrared (FT-IR) spectroscopy analyses. The results of X-ray diffraction (XRD) analysis revealed the formation of a hexagonal crystal structure, and the particle SEM analyses showed irregular shapes around 35.89 nm for the synthesized nanoparticles. The catalytic activity of synthesized ZnO/BaMg2 in the decomposition of methyl orange (MO) and rose bengal (RB) dyes was studied by visible and UV–vis spectroscopy and compared with the catalytic activity of ZnO NPs. The decolorization ratios of both dyes for ZnO/BaMg2 composite were 90.2% and 98.71% of RB and MO, respectively, while for ZnO NPs 75.57% of MO and 88.69% of RB within 120 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

The data are contained within the article.

References

  1. Kumar PP, Bhatlu MLD, Sukanya K, Karthikeyan S, Jayan NJMTP (2021) Synthesis of magnesium oxide nanoparticle by eco friendly method (green synthesis)–A review. Mater Today Proc 37:3028–30

    Article  Google Scholar 

  2. Abinaya S, Kavitha HP, Prakash M, Muthukrishnaraj AJSC (2021) Pharmacy. Green Synth Magn Oxide Nanoparticles its Appl: Rev 19:100368

    Google Scholar 

  3. Gherbi B, Laouini SE, Meneceur S, Bouafia A, Hemmami H, Tedjani ML et al (2022) Effect of pH value on the bandgap energy and particles size for biosynthesis of zno nanoparticles: efficiency for photocatalytic adsorption of methyl orange. Sustain 14(18):11300

    Article  Google Scholar 

  4. Meneceur S, Hemmami H, Bouafia A, Laouini SE, Tedjani ML, Berra D, et al (2022) Photocatalytic activity of iron oxide nanoparticles synthesized by different plant extracts for the degradation of diazo dyes Evans blue and Congo red. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02734-4

  5. Momeni SS, Nasrollahzadeh M (2016) Rustaiyan AJJoc, science i Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity. J Colloid Interface Sci 472:173–179

    Article  Google Scholar 

  6. Ahmed S, Chaudhry SA (2017) Ikram SJJoP, Biology PB A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B 166:272–284

    Article  Google Scholar 

  7. Tripathi R, Bhadwal AS, Gupta RK, Singh P, Shrivastav A, Shrivastav BR et al (2014) ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity. J Photochem Photobiol B 141:288–295

    Article  Google Scholar 

  8. Zidane Y, Laouini SE, Bouafia A, Meneceur S, Tedjani ML, Alshareef SA, et al (2022) Green synthesis of multifunctional MgO@AgO/Ag2O nanocomposite for photocatalytic degradation of methylene blue and toluidine blue. Front Chem. 10. https://doi.org/10.3389/fchem.2022.1083596

  9. Abderrhmane B, Salah EL (2020) Plant-mediated synthesis of iron oxide nanoparticles and evaluation of the antimicrobial activity: a review. Mini-Rev Org Chem 17:1–10. https://doi.org/10.2174/1570193X17999200908091139

    Article  Google Scholar 

  10. Bouafia A, Laouini SE, Ouahrani MR (2020) A review on green synthesis of CuO nanoparticles using plant extract and evaluation of antimicrobial activity. Asian J Res Chem 13(1):65–70

    Article  Google Scholar 

  11. Bouafia A, Laouini SE, Tedjani ML, Ali GAM, Barhoum A (2021) Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications. Text Res J 92(15–16):2685–2696. https://doi.org/10.1177/00405175211006671

    Article  Google Scholar 

  12. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arabian J Chem. 12(7):908–31

    Article  Google Scholar 

  13. Geonmonond RS, Silva AGD (2018) Camargo PHJAdABdC Controlled synthesis of noble metal nanomaterials: motivation, principles, and opportunities in nanocatalysis. An Acad Bras Cienc 90:719–744

    Article  Google Scholar 

  14. Ravichandran V, Sumitha S, Ning CY, Xian OY, Kiew YuU, Paliwal N et al (2020) Durian waste mediated green synthesis of zinc oxide nanoparticles and evaluation of their antibacterial, antioxidant, cytotoxicity and photocatalytic activity. Res Lett 13(2):102–16

    Google Scholar 

  15. Yin H, Chen R, Casey PS, Ke PC, Davis TP (2015) Chen CJRa Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. Rsc Adv 5(90):73963–73973

    Article  Google Scholar 

  16. Kumar SA, Jarvin M, Inbanathan S, Umar A, Lalla N, Dzade NY et al (2022) Facile green synthesis of magnesium oxide nanoparticles using tea (Camellia sinensis) extract for efficient photocatalytic degradation of methylene blue dye. Environ Technol Innov 28:102746

    Article  Google Scholar 

  17. Karimi MA, Hatefi-Mehrjardi A, Askarpour Kabir A (2015) Zaydabadi MJRoCI Synthesis, characterization, and application of MgO/ZnO nanocomposite supported on activated carbon for photocatalytic degradation of methylene blue. Res Chem Intermed 41(9):6157–6168

    Article  Google Scholar 

  18. Laouini SE, Bouafia A, Soldatov AV, Algarni H, Tedjani ML, Ali GAM et al (2021) Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation. Membr 11(7):468

    Article  Google Scholar 

  19. Daoudi H, Bouafia A, Meneceur S, Laouini SE, Belkhalfa H, Lebbihi R et al (2022) Secondary metabolite from Nigella Sativa seeds mediated synthesis of silver oxide nanoparticles for efficient antioxidant and antibacterial activity. J Inorg Organomet Polym Mater 32(11):4223–4236. https://doi.org/10.1007/s10904-022-02393-y

    Article  Google Scholar 

  20. Shimada C, Kano K, Sasaki YF, Sato I, Tsuda S (2010) Differential colon DNA damage induced by azo food additives between rats and mice. J Toxicol Sci 35(4):547–554. https://doi.org/10.2131/jts.35.547

    Article  Google Scholar 

  21. Walthall WK, Stark JD (1999) The acute and chronic toxicity of two xanthene dyes, fluorescein sodium salt and phloxine B, to Daphnia pulex. Environ Pollut 104(2):207–215. https://doi.org/10.1016/S0269-7491(98)00189-4

    Article  Google Scholar 

  22. Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. a review. Crit Rev Environ Sci Technol 44(23):2577–641

    Article  Google Scholar 

  23. Robinson T, McMullan G, Marchant R (2001) Nigam PJBt Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technol 77(3):247–255

    Article  Google Scholar 

  24. Banat IM, Nigam P, Singh D (1996) Marchant RJBt Microbial decolorization of textile-dyecontaining effluents: a review. Bioresource Technol 58(3):217–227

    Article  Google Scholar 

  25. Bensalah N, Alfaro MQ, Martínez-Huitle CJCEJ (2009) Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye. Chem Eng J 149(1–3):348–352

    Article  Google Scholar 

  26. Ghaderi A, Abbasi S, Farahbod F (2015) Synthesis of SnO2 and ZnO nanoparticles and SnO2-ZnO hybrid for the photocatalytic oxidation of methyl orange. Iranian J Chem Eng 12(3):96–105

    Google Scholar 

  27. Devi LG, Reddy KM (2010) Enhanced photocatalytic activity of silver metallized TiO2 particles in the degradation of an azo dye methyl orange: characterization and activity at different pH values. Appl Surf Sci 256(10):3116–21

    Article  Google Scholar 

  28. Tabery HM (1998) Toxic effect of rose bengal dye on the living human corneal epithelium. Acta Ophthalmol Scand 76(2):142–145. https://doi.org/10.1034/j.1600-0420.1998.760203.x

    Article  Google Scholar 

  29. Chung K-T, Stevens SE, Cerniglia CE (1992) The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol 18(3):175–190. https://doi.org/10.3109/10408419209114557

    Article  Google Scholar 

  30. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) Sciences a. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9(1):1–7

    Article  Google Scholar 

  31. Tauc J, Menth A (1972) States in the gap. J Non-Crystalline Solids 8:569–585

  32. Heller R, McGannon J (1950) Weber AJJoAP Precision determination of the lattice constants of zinc oxide. J Appl Phys 21(12):1283–1284

    Article  Google Scholar 

  33. Zhao J-Y, Liu W, Lu XG (2015) Assessments of molar volume of the binary C14 Laves phase. Calphad 50:82–91

    Article  Google Scholar 

  34. Etacheri V, Roshan R, Kumar V (2012) Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl Mater Interfaces 4(5):2717–2725. https://doi.org/10.1021/am300359h

    Article  Google Scholar 

  35. Suresh J, Pradheesh G, Alexramani V, Sundrarajan M, Hong SI (2018) Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D Don) and investigation of its antimicrobial as well as anticancer activities. Adv Nat Sci: Nanosci Nanotechnol 9(1):015008. https://doi.org/10.1088/2043-6254/aaa6f1

    Article  Google Scholar 

  36. Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K et al (2007) Luminescence and photocatalytic activity of zno nanocrystals: correlation between structure and property. Inorg Chem 46(16):6675–82. https://doi.org/10.1021/ic062394m

    Article  Google Scholar 

  37. Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Res-Efficient Technol 3(4):459–465. https://doi.org/10.1016/j.reffit.2017.05.001

    Article  Google Scholar 

  38. Muhammad W, Ullah N, Haroon M, Abbasi BH (2019) Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Adv 9(51):29541–29548. https://doi.org/10.1039/C9RA04424H

    Article  Google Scholar 

  39. Lateef A, Akande MA, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LSJB (2016) Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. 3 Biotech 6(2):1–10

    Article  Google Scholar 

  40. Suresh S, Vennila S, Anita Lett J, Fatimah I, Mohammad F, Al-Lohedan HA et al (2022) Star fruit extract-mediated green synthesis of metal oxide nanoparticles. Inorg Nano-Metal Chem 52(2):173–180

    Google Scholar 

  41. Gawade VV, Gavade NL, Shinde HM, Babar SB, Kadam AN, Garadkar KM (2017) Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J Mater Sci: Mater Electron 28(18):14033–14039. https://doi.org/10.1007/s10854-017-7254-2

    Article  Google Scholar 

  42. Blaskov VN, Stambolova ID, Milenova KI, Zaharieva KL, Dimitrov LD, Stoyanova DD et al (2017) The pho-todegradation of methylene blue and methyl orange dyes and their mixture by ZnO obtained by hydrothermally activated precipitates. Bulg Chem Commun 49:183–187

    Google Scholar 

  43. Chachvalvutikul A, Jakmunee J, Thongtem S, Kittiwachana S, Kaowphong S (2019) Novel FeVO4/Bi7O9I3 nanocomposite with enhanced photocatalytic dye degradation and photoelectrochemical properties. Appl Surf Sci 475:175–184. https://doi.org/10.1016/j.apsusc.2018.12.214

    Article  Google Scholar 

  44. Madima N, Kefeni KK, Mishra SB, Mishra AK (2022) TiO2-modified g-C3N4 nanocomposite for photocatalytic degradation of organic dyes in aqueous solution. Heliyon 8(9):e10683

    Article  Google Scholar 

  45. Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra S (2020) Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 563:370–380

    Article  Google Scholar 

  46. Kumar CR, Betageri VS, Nagaraju G, Pujar G, Suma B, Latha MS et al (2020) Photocatalytic, nitrite sensing and antibacterial studies of facile bio-synthesized nickel oxide nanoparticles. Adv Mater Devices 5(1):48–55

    Article  Google Scholar 

  47. Kumar CR, Betageri VS, Nagaraju G, Pujar G, Onkarappa H, Latha MS et al (2020) One-pot green synthesis of ZnO–CuO nanocomposite and their enhanced photocatalytic and antibacterial activity. Adv Natural Sci Nanosci Nanotechnol 11(1):015009

    Article  Google Scholar 

  48. Hu H, Wang M, Deng C, Chen J, Wang A, Le HJML (2018) Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties. Mater Lett 224:75–77

    Article  Google Scholar 

  49. Ramesh M, Rao MPC, Anandan S, Nagaraja H (2018) Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J Mater Res 33(5):601–610

    Article  Google Scholar 

  50. Kannadasan N, Shanmugam N, Cholan S, Sathishkumar K, Viruthagiri G, Poonguzhali RJMC (2014) The effect of Ce4+ incorporation on structural, morphological and photocatalytic characters of ZnO nanoparticles. Mater Charact 97:37–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: I.K., S.M., A.B., H.A.M.M., and S.E.L.; data curation: I.K., S.M., A.B., and S.E.L.; formal analysis: I.K.,S.M., A.B., and H.A.M.M.; investigation: A.B.,S.M., S.E.L., and H.A.M.M.; methodology: A.B., H.A.M.M., and S.E.L.; project administration: S.M., A.B., and S.E.L..; resources: I.K., S.M., S.E.L., and A.B.; software: A.B. and H.A.M.M.; supervision: S.M. and I.K.; validation: A.B., I.K., and S.E.L.; visualization: A.B. and S.E.L.; writing—original draft: I.K., A.B., S.E.L., H.A.M.M., and S.M.; writing—review and editing: I.K., S.M., H.A.M.M., and S.E.L. The authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abderrhmane Bouafia.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kir, I., Laouini, S.E., Meneceur, S. et al. Biosynthesis and characterization of novel nanocomposite ZnO/BaMg2 efficiency for high-speed adsorption of AZO dye. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03985-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03985-5

Keywords

Navigation