Skip to main content
Log in

Potential of enriched and stabilized anaerobic lignocellulolytic fungi coexisting with bacteria and methanogens for enhanced methane production from rice straw

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Anaerobic lignocellulosic microbial consortia are known to be prodigiously efficient at converting lignocellulosic biomass to methane. In this study, the efficacy of anaerobic fungal consortia (AFC) from five different inocula, including Bubalus bubalis rumen fluid (RU), in degrading filter paper, microcrystalline cellulose, and rice straw (RS), was screened. The AFC from RU performed best in lignocellulosic material degradation and methane production; thus, RU was selected for further experiments. Consecutive batch subculturing (CBS) was performed in RU to enrich and stabilize the dominant and key microorganisms categorized as anaerobic fungi, using the addition of antibacterial agents to suppress the growth of untargeted bacteria. After the CBS, subculture E19 proved the most efficient, with RS degradation of 84% and a methane yield of 310 mL/g VSadded, representing 1.83- and 2.25-fold increases compared to the initial seed, respectively. The microbial community of E19 consisted of anaerobic fungi (uncultured Neocallimastigales, Anaeromyces sp., Orpinomyces sp., and Feramyces sp.) coexisting with anaerobic bacteria (streptomycin resistant Proteiniphilum acetatigenes), and methanogens. The E19 consortium was able to use various carbon sources (87.5%) and contained potential genes encoding enzymes involved in RS degradation. The microbial community of E19 was highly stable, making it a promising inoculum for biomass degradation, especially for anaerobic digestion to produce biogas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

16S rRNA:

16S ribosomal RNA is the RNA component of the 30S subunit of a prokaryotic ribosome

AB:

Anaerobic bacteria

AD:

Anaerobic digestion

AF:

Anaerobic fungi

AFC:

Efficacy of anaerobic fungal consortia

ALMC:

Anaerobic lignocellulosic microbial consortium

AMT:

Acetoclastic methanogens

ANOVA:

One-way analysis of variance

AOAC:

Association of Official Agricultural Chemists

APHA:

American Public Health Association

B-ARISA:

Automated method of ribosomal intergenic spacer analysis for bacteria

BMP:

Biochemical methane potential

BUSCO:

Benchmarking Universal Single-Copy Orthologs

CAZy:

Carbohydrate-active enzymes

CBS:

Consecutive batch subculturing

CM:

Cow manure

COD:

Chemical oxygen demand

CSTR:

Continuously stirred tank reactor

E1 − E19:

Serial number of subculture during enrichment and stabilization

F-ARISA:

Automated method of ribosomal intergenic spacer analysis for fungi

FP:

Filter paper

GC:

Gas chromatography

GH:

Glycoside hydrolase

GM:

Goat manure

HMT:

Hydrogenotrophic methanogens

ISR:

The inoculum (I) to substrate (S) ratio

ITS:

Internal transcribed spacer

MCC:

Microcrystalline cellulose

MT:

Methanigens

MS:

Microbial sludge from anaerobic wastewater treatment system of a palm oil mill factory

PCR:

Polymerase chain reaction

PM:

Pig manure

qPCR:

Quantitative real-time PCR

RS:

Rice straw

RU:

Rumen fluid

SSU:

Small subunit

TS:

Total solids, defined as mass remaining after drying at 105 °C

VFAs:

Volatile fatty acids

VS:

Volatile solids, determined as weight loss from heating in air at 550 °C

°C:

Degree celsius (temperature unit)

bp:

Base pairs (nucleic acid unit)

g :

Gram (mass unit)

h :

Hour (time unit)

L :

Liter (volume unit)

m :

Meter (length unit)

μm:

Micrometer (length unit)

mL:

Milliliter (volume unit)

mg:

Milligram (mass unit)

mm:

Millimeter (length unit)

mM:

Millimolar (concentration unit)

min:

Minute (time unit)

M:

Molar (concentration unit)

s:

Second (time unit)

References

  1. Tursi A (2019) A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J 6(2):962–979. https://doi.org/10.18331/brj2019.6.2.3

    Article  CAS  Google Scholar 

  2. Theuerl S, Klang J, Prochnow A (2019) Process disturbances in agricultural biogas production-causes, mechanisms, and effects on the biogas microbiome: a review. Energies 12(365):20. https://doi.org/10.3390/en12030365

    Article  CAS  Google Scholar 

  3. Office of Agricultural Economics OAE (2020) Information of agricultural production in Thailand http://www.oae.go.th/view/1/Information/EN-US. Accessed 25 Jun 2019

  4. Monlau F, Barakat A, Trably E, Dumas C, Steyer JP, Carrère H (2013) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 43(3):260–322. https://doi.org/10.1080/10643389.2011.604258

    Article  CAS  Google Scholar 

  5. Sun C, Liu R, Cao W, Yin R, Mei Y, Zhang L (2015) Impacts of alkaline hydrogen peroxide pretreatment on chemical composition and biochemical methane potential of agricultural crop stalks. Energy Fuels 29(8):4966–4975. https://doi.org/10.1021/acs.energyfuels.5b00838

    Article  CAS  Google Scholar 

  6. Widjaja T, Noviyanto AA, Gunawan S (2016) The effect of rumen and mixed microorganism (rumen and effective microorganisms) on biogas production from rice straw waste. ARPN JEAS 11(4):2702–2710

    CAS  Google Scholar 

  7. Contreras LM, Schelle H, Sebrango CR, Pereda I (2012) Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process. Water Sci Technol 65(6):1142–1149. https://doi.org/10.2166/wst.2012.951

    Article  CAS  PubMed  Google Scholar 

  8. Dehghani M, Karimi K, Sadeghi M (2015) Pretreatment of rice straw for the improvement of biogas production. Energy Fuels 29(6):3770–3775. https://doi.org/10.1021/acs.energyfuels.5b00718

    Article  CAS  Google Scholar 

  9. Mustafa AM, Poulsen TG, Xia Y, Sheng K (2017) Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion. Biores Technol 224:174–182. https://doi.org/10.1016/j.biortech.2016.11.028

    Article  CAS  Google Scholar 

  10. Doi RH (2008) Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 1125:267–279. https://doi.org/10.1196/annals.1419.002

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerova K (2015) Anaerobic fungi and their potential for biogas production. Adv Biochem Eng Biotechnol 151:41–61. https://doi.org/10.1007/978-3-319-21993-6_2

    Article  CAS  PubMed  Google Scholar 

  12. Youssef N, Couger M, Struchtemeyer C, Liggenstoffer A, Prade R, Najar F, Atiyeh H, Wilkins M, Elshahed M (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79(15):4620–4634. https://doi.org/10.1128/AEM.00821-13

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tabatabaei M, Aghbashlo M, Valijanian E, Kazemi Shariat Panahi H, Nizami A-S, Ghanavati H, Sulaiman A, Mirmohamadsadeghi S, Karimi K (2020) A comprehensive review on recent biological innovations to improve biogas production, Part 1: upstream strategies. Renew Energy 146:1204–1220. https://doi.org/10.1016/j.renene.2019.07.037

    Article  CAS  Google Scholar 

  14. Tabatabaei M, Aghbashlo M, Valijanian E, Kazemi Shariat Panahi H, Nizami A-S, Ghanavati H, Sulaiman A, Mirmohamadsadeghi S, Karimi K (2020) A comprehensive review on recent biological innovations to improve biogas production, Part 2: mainstream and downstream strategies. Renew Energy 146:1392–1407. https://doi.org/10.1016/j.renene.2019.07.047

    Article  CAS  Google Scholar 

  15. Thongbunrod N, Chaiprasert P (2021) Efficacy and metagenomic analysis of the stabilized anaerobic lignocellulolytic microbial consortium from Bubalus bubalis rumen with rice straw enrichment for methane production. BioEnergy Research 14(3):870–890. https://doi.org/10.1007/s12155-020-10167-y

    Article  CAS  Google Scholar 

  16. Rouches E, Zhou S, Steyer JP, Carrere H (2016) White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: impact of glucose supplementation. Process Biochem 51(11):1784–1792. https://doi.org/10.1016/j.procbio.2016.02.003

    Article  CAS  Google Scholar 

  17. Kainthola J, Kalamdhad AS, Goud VV, Goel R (2019) Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresour Technol 286:121368. https://doi.org/10.1016/j.biortech.2019.121368

    Article  CAS  PubMed  Google Scholar 

  18. Kong X, Du J, Ye X, Xi Y, Jin H, Zhang M, Guo D (2018) Enhanced methane production from wheat straw with the assistance of lignocellulolytic microbial consortium TC-5. Bioresour Technol 263:33–39. https://doi.org/10.1016/j.biortech.2018.04.079

    Article  CAS  PubMed  Google Scholar 

  19. Li P, He C, Li G, Ding P, Lan M, Gao Z, Jiao Y (2020) Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production. Bioengineered 11(1):251–260. https://doi.org/10.1080/21655979.2020.1733733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu W, Fu S, Yang Z, Lu J, Guo R (2018) Improved methane production from corn straw by microaerobic pretreatment with a pure bacteria system. Bioresour Technol 259:18–23. https://doi.org/10.1016/j.biortech.2018.02.046

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Wu Y, Zhao J, Wang S, Dong Z, Shao T (2022) Bioaugmented degradation of rice straw combining two novel microbial consortia and lactic acid bacteria for enhancing the methane production. Bioresour Technol 344:126148. https://doi.org/10.1016/j.biortech.2021.126148

    Article  CAS  PubMed  Google Scholar 

  22. Ozbayram EG, Akyol C, Ince B, Karakoc C, Ince O (2018) Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure. J Appl Microbiol 124(2):491–502. https://doi.org/10.1111/jam.13668

    Article  CAS  PubMed  Google Scholar 

  23. Ozbayram EG, Kleinsteuber S, Nikolausz M, Ince B, Ince O (2017) Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Anaerobe 46:122–130. https://doi.org/10.1016/j.anaerobe.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  24. Ma Y, Li Y, Li Y, Cheng Y, Zhu W (2020) The enrichment of anaerobic fungi and methanogens showed higher lignocellulose degrading and methane producing ability than that of bacteria and methanogens. World J Microbiol Biotechnol 36(125):1–9. https://doi.org/10.1007/s11274-020-02894-3

    Article  CAS  Google Scholar 

  25. Tsapekos P, Kougias PG, Vasileiou SA, Treu L, Campanaro S, Lyberatos G, Angelidaki I (2017) Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. Bioresour Technol 234:350–359. https://doi.org/10.1016/j.biortech.2017.03.043

    Article  CAS  PubMed  Google Scholar 

  26. Yıldırım E, Ince O, Aydin S, Ince B (2017) Improvement of biogas potential of anaerobic digesters using rumen fungi. Renew Energy 109:346–353. https://doi.org/10.1016/j.renene.2017.03.021

    Article  CAS  Google Scholar 

  27. Akyol C, Ince O, Bozan M, Ozbayram EG, Ince B (2019) Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: what to expect from anaerobic fungus Orpinomyces sp. Bioresour Technol 277:1–10. https://doi.org/10.1016/j.biortech.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  28. Ferraro A, Dottorini G, Massini G, Mazzurco Miritana V, Signorini A, Lembo G, Fabbricino M (2018) Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw. Bioresour Technol 260:364–373. https://doi.org/10.1016/j.biortech.2018.03.128

    Article  CAS  PubMed  Google Scholar 

  29. Wei YQ, Long RJ, Yang H, Yang HJ, Shen XH, Shi RF, Wang ZY, Du JG, Qi XJ, Ye QH (2016) Fiber degradation potential of natural co-cultures of Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks (Bos grunniens) grazing on the Qinghai Tibetan Plateau. Anaerobe 39:158–164. https://doi.org/10.1016/j.anaerobe.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen QH, Le PD, Chim C, Le ND, Fievez V (2019) Potential to mitigate ammonia emission from slurry by increasing dietary fermentable fiber through inclusion of tropical byproducts in practical diets for growing pigs. Asian-Australas J Anim Sci 32(4):574–584. https://doi.org/10.5713/ajas.18.0481

    Article  CAS  PubMed  Google Scholar 

  31. Grenet E, Bernalier A, Jamot J, Fonty G (1993) Degradation of untreated and anhydrous ammonia-treated wheat straw by two strains of rumen anaerobic fungi. Ann Zootech 42(180):1–1

    Google Scholar 

  32. Ha JK, Lee SS, Kim SW, Han IK, Ushida K, Cheng KJ (2001) Degradation of rice straw by rumen fungi and cellulolytic bacteria through mono-, co- or sequential- culture. Asian Australas J Anim Sci 14(6):797–802

    Article  Google Scholar 

  33. APHA (2012) Standard methods for the examination of water and wastewater, 22nd edition out of print. American public health association (APHA), American water works association (AWWA) and water environment federation (WEF), Washington

  34. Bauchop T (1979) Rumen anaerobic fungi of cattle and sheep. Appl Environ Microbiol 38(1):148–158

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mertens DR (2002) Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J AOAC Int 85:24

    Google Scholar 

  36. Theodorou M, Williams B, Dhanoa M, McAllan A, France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Journal of Animal and Feed Sciences 48(3):185–197. https://doi.org/10.1016/0377-8401(94)90171-6

    Article  Google Scholar 

  37. Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2010) Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenergy 34(8):1117–1124. https://doi.org/10.1016/j.biombioe.2010.02.018

    Article  CAS  Google Scholar 

  38. Ranjard L, Poly F, Lata JC, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67(10):4479–4487. https://doi.org/10.1128/aem.67.10.4479-4487.2001

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kittelmann S, Naylor GE, Koolaard JP, Janssen PH (2012) A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS ONE 7(5):1–3. https://doi.org/10.1371/journal.pone.0036866

    Article  CAS  Google Scholar 

  40. Yu Q, Liu R, Li K, Ma R (2019) A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew Sustain Energy Rev 107:51–58. https://doi.org/10.1016/j.rser.2019.02.020

    Article  CAS  Google Scholar 

  41. Belda-Galbis CM, Pina-Perez MC, Espinosa J, Marco-Celdran A, Martinez A, Rodrigo D (2014) Use of the modified Gompertz equation to assess the Stevia rebaudiana Bertoni antilisterial kinetics. Food Microbiol 38:56–61. https://doi.org/10.1016/j.fm.2013.08.009

    Article  PubMed  Google Scholar 

  42. Li Y, Zhang R, Liu G, Chen C, He Y, Liu X (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol 149:565–569. https://doi.org/10.1016/j.biortech.2013.09.063

    Article  CAS  PubMed  Google Scholar 

  43. Baetge S, Kaltschmitt M (2018) Rice straw and rice husks as energy sources-comparison of direct combustion and biogas production. Biomass Conversion and Biorefinery 8(3):719–737. https://doi.org/10.1007/s13399-018-0321-y

    Article  CAS  Google Scholar 

  44. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Silva reference files: Release 132 (2018). https://mothur.org/wiki/silva_reference_files/. Accessed 28 Sept 2020

  46. Kessy A, Allan Z, Timo P, Raivo P, Filipp I, Henrik NR, Urmas K (2020) UNITE mothur release for Fungi 2. UNITE Community. https://unite.ut.ee/repository.php. Accessed 25 Sep 2020

  47. Koetschan C, Kittelmann S, Lu J, Al-Halbouni D, Jarvis GN, Muller T, Wolf M, Janssen PH (2014) Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota). PLoS ONE 9(3):1–10. https://doi.org/10.1371/journal.pone.0091928

    Article  CAS  Google Scholar 

  48. Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C, Bretaudeau A, Brillet-Gueguen L, Cech M, Chilton J, Clements D, Doppelt-Azeroual O, Erxleben A, Freeberg MA, Gladman S, Hoogstrate Y, Hotz HR, Houwaart T, Jagtap P, Lariviere D, Le Corguille G, Manke T, Mareuil F, Ramirez F, Ryan D, Sigloch FC, Soranzo N, Wolff J, Videm P, Wolfien M, Wubuli A, Yusuf D, Galaxy Training N, Taylor J, Backofen R, Nekrutenko A, Gruning B (2018) Community-driven data analysis training for biology. Cell Syst 6(6):752–758. https://doi.org/10.1016/j.cels.2018.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Phan S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, KelleyMethe´SchlossGeversMitrevaHuttenhower TSBPDDMC (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. Appl Environ Microbiol 8(6):1–18. https://doi.org/10.1371/journal.pcbi.1002358

    Article  CAS  Google Scholar 

  51. Levy Karin E, Mirdita M, Soding J (2020) MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8(48):1–15. https://doi.org/10.1186/s40168-020-00808-x

    Article  CAS  Google Scholar 

  52. Keller O, Kollmar M, Stanke M, Waack S (2011) A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27(6):757–763. https://doi.org/10.1093/bioinformatics/btr010

    Article  CAS  PubMed  Google Scholar 

  53. Eko H, Chaiprasert P (2019) Enhancement of methane production from high solid anaerobic digestion of pretreated palm oil decanter cake using a modified solid inclined reactor. J Chem Technol Biotechnol 95(3):781–790. https://doi.org/10.1002/jctb.6266

    Article  CAS  Google Scholar 

  54. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189. https://doi.org/10.1196/annals.1419.019

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Ozbayram EG, Kleinsteuber S, Nikolausz M (2020) Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Appl Microbiol Biotechnol 104(2):489–508. https://doi.org/10.1007/s00253-019-10239-w

    Article  CAS  PubMed  Google Scholar 

  56. Li K, Zhu H, Zhang Y, Zhang H (2017) Characterization of the microbial communities in rumen fluid inoculated reactors for the biogas digestion of wheat straw. Sustainability 9:243. https://doi.org/10.3390/su9020243

    Article  CAS  Google Scholar 

  57. Nagler M, Kozjek K, Etemadi M, Insam H, Podmirseg SM (2019) Simple yet effective: microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants. J Biotechnol 300:1–10. https://doi.org/10.1016/j.jbiotec.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  58. Joblin KN (1981) Isolation, enumeration, and maintenance of rumen anaerobic fungi in roll tubes. Appl Environ Microbiol 42(6):1119–1122

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jin W, Cheng YF, Mao SY, Zhu WY (2011) Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresour Technol 102(17):7925–7931. https://doi.org/10.1016/j.biortech.2011.06.026

    Article  CAS  PubMed  Google Scholar 

  60. Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK, Dagar SS, Griffith GW (2015) Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys 9:11–28. https://doi.org/10.3897/mycokeys.9.9032

    Article  Google Scholar 

  61. Dagar SS, Kumar S, Griffith GW, Edwards JE, Callaghan TM, Singh R, Nagpal AK, Puniya AK (2015) A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol Rev 119(8):731–737. https://doi.org/10.1016/j.funbio.2015.04.005

    Article  Google Scholar 

  62. Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW, Dagar SS (2018) Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 40:89–110. https://doi.org/10.3897/mycokeys.40.28337

    Article  Google Scholar 

  63. Jing R, Yan Y (2020) Metagenomic analysis reveals antibiotic resistance genes in the bovine rumen. Microb Pathog 149:1–25. https://doi.org/10.1016/j.micpath.2020.104350

    Article  CAS  Google Scholar 

  64. Treu L, Campanaro S, Kougias PG, Sartori C, Bassani I, Angelidaki I (2018) Hydrogen-fueled microbial pathways in biogas upgrading systems revealed by genome-centric metagenomics. Front Microbiol 9:1–16. https://doi.org/10.3389/fmicb.2018.01079

    Article  Google Scholar 

  65. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044

    Article  CAS  PubMed  Google Scholar 

  66. Chandra R, Vijay VK, Subbarao PMV, Khura TK (2012) Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Appl Energy 93:148–159. https://doi.org/10.1016/j.apenergy.2010.10.049

    Article  ADS  CAS  Google Scholar 

  67. Kim M, Gomec CY, Ahn Y, Speece RE (2003) Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environ Technol 24(9):1183–1190. https://doi.org/10.1080/09593330309385659

    Article  CAS  PubMed  Google Scholar 

  68. Siegert I, Banks C (2005) The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem 40(11):3412–3418. https://doi.org/10.1016/j.procbio.2005.01.025

    Article  CAS  Google Scholar 

  69. Theodorou MK, Gill M, King-Spooner C, Beever DE (1990) Enumeration of anaerobic chytridiomycetes as thallus-forming units: novel method for quantification of fibrolytic fungal populations from the digestive tract ecosystem. Appl Environ Microbiol 56(4):1073–1078. https://doi.org/10.1128/aem.56.4.1073-1078.1990

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Orpin CG (1977) The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen. J Gen Microbiol 99:107–117. https://doi.org/10.1099/00221287-99-1-107

    Article  CAS  PubMed  Google Scholar 

  71. Hansen JC, Aanderud ZT, Reid LE, Bateman C, Hansen CL, Rogers LS, Hansen LD (2021) Enhancing waste degradation and biogas production by pre-digestion with a hyperthermophilic anaerobic bacterium. Biofuel Res J 8(3):1433–1443. https://doi.org/10.18331/brj2021.8.3.3

    Article  CAS  Google Scholar 

  72. Mirmohamadsadeghi S, Karimi K, Azarbaijani R, Parsa Yeganeh L, Angelidaki I, Nizami A-S, Bhat R, Dashora K, Vijay VK, Aghbashlo M, Gupta VK, Tabatabaei M (2021) Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renew Sustain Energy Rev 135:1–18. https://doi.org/10.1016/j.rser.2020.110173

    Article  CAS  Google Scholar 

  73. Griessmeier V, Gescher J (2018) Influence of the potential carbon sources for field denitrification beds on their microbial diversity and the fate of carbon and nitrate. Front Microbiol 9:1–15. https://doi.org/10.3389/fmicb.2018.01313

    Article  Google Scholar 

  74. O’Shea R, Lin R, Wall DM, Browne JD, Murphy JD (2021) Distillery decarbonization and anaerobic digestion: balancing benefits and drawbacks using a compromise programming approach. Biofuel Res J 8(3):1417–1432. https://doi.org/10.18331/brj2021.8.3.2

    Article  CAS  Google Scholar 

  75. Garcia SL, Jangid K, Whitman WB, Das KC (2011) Transition of microbial communities during the adaption to anaerobic digestion of carrot waste. Bioresour Technol 102(15):7249–7256. https://doi.org/10.1016/j.biortech.2011.04.098

    Article  CAS  PubMed  Google Scholar 

  76. Ito T, Yoshiguchi K, Ariesyady HD, Okabe S (2011) Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge. ISME J 5(12):1844–1856. https://doi.org/10.1038/ismej.2011.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Downes J, Vartoukian SR, Dewhirst FE, Izard J, Chen T, Yu WH, Sutcliffe IC, Wade WG (2009) Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum ‘Synergistetes’ isolated from the human oral cavity. Int J Syst Evol Microbiol 59(5):972–980. https://doi.org/10.1099/ijs.0.000364-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen S, Dong X (2005) Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int J Syst Evol Microbiol 55(6):2257–2261. https://doi.org/10.1099/ijs.0.63807-0

    Article  CAS  PubMed  Google Scholar 

  79. Kumar M, Verma S, Gazara RK, Kumar M, Pandey A, Verma PK, Thakur IS (2018) Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating beta-proteobacterium Pandoraea sp. ISTKB Biotechnol Biofuels 11:154. https://doi.org/10.1186/s13068-018-1148-2

    Article  CAS  PubMed  Google Scholar 

  80. Liu D (2015) Aeromonas. In: Mol. Microbiol. pp 1099–1110.https://doi.org/10.1016/b978-0-12-397169-2.00061-5

  81. Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13(2):413–429. https://doi.org/10.1038/s41396-018-0279-6

    Article  CAS  PubMed  Google Scholar 

  82. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role, and biotechnological potential. FEMS Microbiol Ecol 90(1):1–17. https://doi.org/10.1111/1574-6941.12383

    Article  CAS  PubMed  Google Scholar 

  83. Hanafy RA, Elshahed MS, Youssef NH (2018) Feramyces austinii, gen. nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer. Mycologia 110(3):513–525. https://doi.org/10.1080/00275514.2018.1466610

    Article  CAS  PubMed  Google Scholar 

  84. Hanafy RA, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Dagar SS, Griffith GW, Elshahed MS, Youssef NH (2020) Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia:1–28 https://doi.org/10.1080/00275514.2019.1696619

  85. Kameshwar AKS, Qin W (2018) Genome wide analysis reveals the extrinsic cellulolytic and biohydrogen generating abilities of Neocallimastigomycota fungi. J Genomics 6:74–87. https://doi.org/10.7150/jgen.25648

    Article  PubMed  PubMed Central  Google Scholar 

  86. Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, Swift CL, Salamov A, Barry K, Grigoriev IV, Theodorou MK, Valentine DL, O’Malley MA (2021) Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat Microbiol 6(4):499–511. https://doi.org/10.1038/s41564-020-00861-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hanafy RA, Johnson B, Youssef NH, Elshahed MS (2020) Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ Microbiol.https://doi.org/10.1111/1462-2920.15164

  88. Gruninger RJ, Nguyen TTM, Reid ID, Yanke JL, Wang P, Abbott DW, Tsang A, McAllister T (2018) Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant dell wall carbohydrates. Front Microbiol 9:1581. https://doi.org/10.3389/fmicb.2018.01581

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Dr. Anna Schnürer for the support of barcode preparation and the 16s and ITS1 sequencing at the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Sweden; the Freiburg Galaxy Team: Person X and Prof. Dr. Rolf Backofen for the website of metagenomic data analysis, Bioinformatics, University of Freiburg, Germany, funded by Collaborative Research Centre 992 Medical Epigenetics (DFG grant SFB 992/1 2012) and German Federal Ministry of Education and Research (BMBF grant 031 A538A de. NBI-RBC); the laboratory facility from Excellent Center of Waste Utilization and Management (ECoWaste) at King Mongkut’s University of Technology Thonburi, Thailand.

Funding

The authors gratefully acknowledge the financial support by the Petchra Pra Jom Klao Doctoral Scholarship from King Mongkut’s University of Technology Thonburi (KMUTT) awarded to Ms. Nitiya Thongbunrod. Research funding was supported by the Fundamental Fund (FF) of Thailand Science Research and Innovation (TSRI) and Ministry of Higher Education, Science, Research, and Innovation (MHESI).

Author information

Authors and Affiliations

Authors

Contributions

Pawinee Chaiprasert: conceptualization, project administration, funding acquisition, resources, supervision, and writing—reviewing and editing. Nitiya Thongbunrod: methodology, data curation, formal analysis, visualization, investigation, and writing—original draft preparation.

Corresponding author

Correspondence to Pawinee Chaiprasert.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8847 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongbunrod, N., Chaiprasert, P. Potential of enriched and stabilized anaerobic lignocellulolytic fungi coexisting with bacteria and methanogens for enhanced methane production from rice straw. Biomass Conv. Bioref. 14, 8229–8250 (2024). https://doi.org/10.1007/s13399-022-03129-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03129-1

Keywords

Navigation