Skip to main content

Advertisement

Log in

Recent trends and future perspectives of lignocellulose biomass for biofuel production: a comprehensive review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Agricultural and lignocellulose residues are a large number of available biomass substrates and important sources for the fermentation of biofuels. Gasification and enzymatic hydrolysis are the main technologies for converting lignocellulose biomass into products for the production of biofuels as a sustainable energy source for fuel transportation. Bio-fuel production is getting interest due to the depletion of crude oil reserves. Biofuel production is an economical alternative source for transport and energy sectors since it offers the utilization of cheap lignocellulose biomass for generating valued bio-fuels and chemicals. However, most of the processes are still in development phase due to techno-economic challenges and diversity in composition of lignocellulose biomass. Optimizations have been made over the years to make these processes developed enough to be employed on the industrial scale. This review accounts the sources and compositions of different lignocellulosic biomasses along with several thermo-chemical, catalytic, and integrated strategies for their conversion to produce bio-fuels and other valuable chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akram R, Chen F, Khalid F, Ye Z, Majeed MT (2020) Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: evidence from developing countries. J Clean Prod 247:119122. https://doi.org/10.1016/j.jclepro.2019.119122

    Article  Google Scholar 

  2. Alonso DM et al (2017) Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Sci Adv 3:e1603301

    Article  Google Scholar 

  3. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    Article  Google Scholar 

  4. Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Biores Technol 101:4851–4861

    Article  Google Scholar 

  5. Anbarasan P et al (2012) Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491:235

    Article  Google Scholar 

  6. Bajaj BK, Pangotra H, Wani MA, Sharma P, Sharma A (2009) Partial purification and characterization of a highly thermostable and pH stable endoglucanase from a newly isolated Bacillus strain M-9. http://nopr.niscair.res.in/handle/123456789/6161

  7. Balat M (2007) An overview of biofuels and policies in the European Union. Energy Sources Part B 2:167–181

    Article  Google Scholar 

  8. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875

    Article  Google Scholar 

  9. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  Google Scholar 

  10. Ballesteros I, Oliva J, Negro M, Manzanares P, Ballesteros M (2002) Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochem 38:187–192

    Article  Google Scholar 

  11. Baloch HA et al (2018) Recent advances in production and upgrading of bio-oil from biomass: a critical overview. J Environ Chem Eng 6:5101–5118

    Article  Google Scholar 

  12. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    Article  Google Scholar 

  13. Brodeur G, Yau E, Badal K, Collier J, Ramachandran K, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532

  14. Bull S, Riley C, Tyson K, Costello R (1993) Total fuel cycle and emissions analysis of biomass-to-ethanol production energy from biomass and wastes. 16:239–239

  15. Cadoche L, López GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes 30:153–157

    Article  Google Scholar 

  16. Campbell CJ, Laherrère JH (1998) The end of cheap oil. Sci Am 278:60–65

    Article  Google Scholar 

  17. Cardona Alzate CA, Solarte Toro JC, Peña ÁG (2018) Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catal Today 302:61–72. https://doi.org/10.1016/j.cattod.2017.09.034

    Article  Google Scholar 

  18. Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52:241

    Article  Google Scholar 

  19. Carter M (2015a) Direct catalytic conversion of cellulosic materials to ethanol. Google Patents

  20. Carter MK (2015b) Direct catalytic conversion of cellulosic materials to ethanol. Google Patents

  21. Cavka A, Jönsson LJ (2013) Detoxification of lignocellulosic hydrolysates using sodium borohydride. Biores Technol 136:368–376

    Article  Google Scholar 

  22. Chan E, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  23. Chandel AK, Da Silva SS, Singh OV (2013) Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. BioEnergy Res 6:388–401

    Article  Google Scholar 

  24. Cheah WY, Sankaran R, Show PL, Ibrahim TNBT, Chew KW, Culaba A, Jo-Shu C (2020) Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res J 7:1115

    Article  Google Scholar 

  25. Chen F, Srinivasa Reddy MS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124

    Article  Google Scholar 

  26. Chen S, Zhang X, Singh D, Yu H, Yang X (2010) Biological pretreatment of lignocellulosics: potential, progress and challenges. Biofuels 1:177–199. https://doi.org/10.4155/bfs.09.13

    Article  Google Scholar 

  27. Choudhary M, Joshi S, Singh P, Srivastava N (2020) Chapter 1 - Biofuel production from lignocellulosic biomass: Introduction and metabolic engineering for fermentation scale-up. In: Kuila A, Sharma V (eds) Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass. Elsevier, pp 1–12. https://doi.org/10.1016/B978-0-12-817953-6.00001-4

  28. De Jongh WA, Carrier M, Knoetze JH (2011) Vacuum pyrolysis of intruder plant biomasses. J Anal Appl Pyrol 92:184–193

    Article  Google Scholar 

  29. Demirbas MF (2006) Current technologies for biomass conversion into chemicals and fuels. Energy Sources Part A Recover Utilization Environ Effects 28:1181–1188

    Article  Google Scholar 

  30. Devi A, Singh A, Bajar S, Pant D (2021) Ethanol from lignocellulosic biomass: an in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J Environ Chem Eng 4:105798

  31. Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21:1792–1815

    Article  Google Scholar 

  32. Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13:1275–1287

    Article  Google Scholar 

  33. Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technol 59:129–136

    Article  Google Scholar 

  34. Fischer B, Pigneri A (2011) Potential for electrification from biomass gasification in Vanuatu. Energy 36:1640–1651

    Article  Google Scholar 

  35. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Biofuels. Springer, pp 41–65

  36. Gámez S, González-Cabriales JJ, Ramírez JA, Garrote G, Vázquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74:78–88

    Article  Google Scholar 

  37. García-Negrón V et al (2017) Processing–structure–property relationships for lignin-based carbonaceous materials used in energy-storage applications. Energy Technol 5:1311–1321

    Article  Google Scholar 

  38. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Biores Technol 101:4775–4800

    Article  Google Scholar 

  39. Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husks. Biotech Lett 31:1315–1319. https://doi.org/10.1007/s10529-009-0023-4

    Article  Google Scholar 

  40. Griebl A, Lange T, Weber H, Milacher W, Sixta H (2005) Xylo‐Oligosaccharide (XOS) Formation through Hydrothermolysis of xylan derived from viscose process. In: Macromolecular symposia. vol 1. Wiley Online Library, pp 107–120

  41. Hák T, Janoušková S, Moldan B (2016) Sustainable Development Goals: a need for relevant indicators. Ecol Ind 60:565–573. https://doi.org/10.1016/j.ecolind.2015.08.003

    Article  Google Scholar 

  42. Hales D (2020) Renewables 2020 global status report. Rep Paris 120–130

  43. Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28:384–410

    Article  Google Scholar 

  44. Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR-Food & Biobased Research

  45. Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145:138–151

    Article  Google Scholar 

  46. Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores Technol 100:10–18

    Article  Google Scholar 

  47. Himmel ME, Baker JO, Overend RP (1994) Enzymatic conversion of biomass for fuels production. American Chemical Society Washington, DC

  48. Howard R, Abotsi E, Van Rensburg EJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotech 2:602–619

    Article  Google Scholar 

  49. Huang K, Won W, Barnett KJ, Brentzel ZJ, Alonso DM, Huber GW, Dumesic JA, Maravelias CT (2018) Improving economics of lignocellulosic biofuels: an integrated strategy for coproducing 1, 5-pentanediol and ethanol. Appl Energy 213:585–594

  50. Huang X, Dong W, Wang H, Feng Y (2018) Role of acid/alkali-treatment in primary sludge anaerobic fermentation: insights into microbial community structure, functional shifts and metabolic output by high-throughput sequencing. Bioresource Technol 249:943–952

    Article  Google Scholar 

  51. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450

    Article  Google Scholar 

  52. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  Google Scholar 

  53. Ibrahim A, Nada A, Hagemann U, El Seoud O (1996) Preparation of dissolving pulp from sugar cane bagasse, and its acetylation under homogeneous solution condition. Holzforschung-Int J Biol Chem Phys Technol Wood 50:221–225

    Google Scholar 

  54. Iribarren D, Peters JF, Dufour J (2012) Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel 97:812–821

    Article  Google Scholar 

  55. Isahak WNRW, Hisham MW, Yarmo MA, Hin T-yY (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16:5910–5923

    Article  Google Scholar 

  56. Ishola MM, Jahandideh A, Haidarian B, Brandberg T, Taherzadeh MJ (2013) Simultaneous saccharification, filtration and fermentation (SSFF): a novel method for bioethanol production from lignocellulosic biomass. Bioresource Technol 133:68–73

    Article  Google Scholar 

  57. Jatoi AS, Akhter F, Mazari SA, Sabzoi N, Aziz S, Soomro SA, Mubarak NM, Baloch H, Memon AQ, Ahmed S (2021) Advanced microbial fuel cell for waste water treatment—a review. Environ Sci Pollut Res 28(5):5005–5019

  58. Jatoi AS, Baloch HA, Mazari SA, Mubarak NM, Sabzoi N, Aziz S, Soomro SA, Abro R, Shah SF (2021) A review on extractive fermentation via ion exchange adsorption resins opportunities, challenges, and future prospects. Biomass Convers Biorefinery 14:1–2

  59. Kebelmann K, Hornung A, Karsten U, Griffiths G (2013) Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy 49:38–48

    Article  Google Scholar 

  60. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  61. Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38:803–807. https://doi.org/10.1007/s10295-010-0812-8

    Article  Google Scholar 

  62. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Biores Technol 96:1994–2006

    Article  Google Scholar 

  63. Kim TH, Lee YY, Sunwoo C, Kim JS (2006) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133:41–57

    Article  Google Scholar 

  64. Kim Y, Mosier NS, Ladisch MR (2009) Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Prog 25:340–348

    Article  Google Scholar 

  65. Klein-Marcuschamer D, Blanch HW (2015) Renewable fuels from biomass: technical hurdles and economic assessment of biological routes. AIChE J 61:2689–2701

    Article  Google Scholar 

  66. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  Google Scholar 

  67. Koppram R, Tomás-Pejó E, Xiros C, Olsson L (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32:46–53

    Article  Google Scholar 

  68. Kumar A, Singh L, Ghosh S (2009) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresource Technol 100:3293–3297

    Article  Google Scholar 

  69. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  Google Scholar 

  70. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    Article  Google Scholar 

  71. Le VMR (2017) Catalytic conversion of ligno-cellulosic biomass into fuels and chemicals. Google Patents

  72. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  Google Scholar 

  73. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress Energy Combust Sci 38:449–467

    Article  Google Scholar 

  74. Ludueña L, Fasce D, Alvarez VA, Stefani PM (2011) Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources 6:1440–1453

    Article  Google Scholar 

  75. Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  Google Scholar 

  76. Malek AA, Hasanuzzaman M, Abd Rahim N (2020) Prospects, progress, challenges and policies for clean power generation from biomass resources. Clean Technol Environ Policy 22:1229–1253

    Article  Google Scholar 

  77. McMillan JD (1994) Pretreatment of lignocellulosic biomass. In. ACS Publications

  78. Millett MA, Baker AJ, Satter LD (1976) Physical and chemical pretreatments for enhancing cellulose saccharification. In: Biotechnol. Bioeng. Symp.;(United States). Dept. of Agriculture, Madison, WI

  79. Mishra RK, Mohanty K (2018) Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Convers Biorefinery 8:799–812

    Article  Google Scholar 

  80. Mishra RK, Mohanty K (2018) Thermocatalytic conversion of non-edible neem seeds towards clean fuel and chemicals. J Anal Appl Pyrolysis 134:83–92

    Article  Google Scholar 

  81. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen K, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19

    Article  Google Scholar 

  82. Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  Google Scholar 

  83. Moustakas K, Loizidou M, Rehan M, Nizami A (2020) A review of recent developments in renewable and sustainable energy systems: key challenges and future perspective. Elsevier

    Google Scholar 

  84. Nachenius R, Ronsse F, Venderbosch R, Prins W (2013) Biomass pyrolysis. In: Advances in chemical engineering, vol 42. Elsevier, pp 75–139

  85. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Ren Sustain Energy Rev 14:578–597

    Article  Google Scholar 

  86. Nguyen Q, Bowyer J, Howe J, Bratkovich S, Groot H, Pepke E, Fernholz K (2017) Global production of second generation biofuels: trends and influences

  87. Nguyen TH, Ra CH, Sunwoo IY, Sukwong P, Jeong GT, Kim SK (2018) Bioethanol production from soybean residue via separate hydrolysis and fermentation. Appl Biochem Biotechnol 184(2):513–523

  88. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611

    Article  Google Scholar 

  89. NREl U (2006) The DOE Bioethanol Pilot Plant

  90. O’Neill BJ et al (2013) Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition. Angew Chem 125:14053–14057

    Article  Google Scholar 

  91. O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  92. Pan X et al (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481

    Article  Google Scholar 

  93. Pang SH, Love NE, Medlin JW (2014) Synergistic effects of alloying and thiolate modification in furfural hydrogenation over Cu-based catalysts. J Phys Chem Lett 5:4110–4114

    Article  Google Scholar 

  94. Parisutham V, Kim TH, Lee SK (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Biores Technol 161:431–440

    Article  Google Scholar 

  95. Patel M, Zhang X, Kumar A (2016) Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review. Renew Sustain Energy Rev 53:1486–1499

    Article  Google Scholar 

  96. Peacocke G, Bridgwater A (1994) Ablative plate pyrolysis of biomass for liquids. Biomass Bioenerg 7:147–154

    Article  Google Scholar 

  97. Pérez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  Google Scholar 

  98. Pérez J, Ballesteros I, Ballesteros M, Sáez F, Negro M, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647

    Article  Google Scholar 

  99. Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources Conserv Recycl 50:1–39. https://doi.org/10.1016/j.resconrec.2006.05.007

    Article  Google Scholar 

  100. Prasad Shadangi K, Mohanty K (2013) Characterization of nonconventional oil containing seeds towards the production of bio-fuel. J Renew Sustain Energy 5:033111

    Article  Google Scholar 

  101. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. TRENDS Biotechnol 23:22–27

    Article  Google Scholar 

  102. Reid ID (1989) Optimization of solid-state fermentation for selective delignification of aspen wood with Phlebia tremellosa. Enzyme Microbial Technol 11:804–809

    Article  Google Scholar 

  103. Rezania S et al (2018) Ethanol production from water hyacinth (Eichhornia crassipes) using various types of enhancers based on the consumable sugars. Waste Biomass Valorization 9:939–946

    Article  Google Scholar 

  104. Rezania S et al (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 199:117457

    Article  Google Scholar 

  105. Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312:1933–1937

    Article  Google Scholar 

  106. Sahoo A, Kumar S, Mohanty K (2020) A comprehensive characterization of non-edible lignocellulosic biomass to elucidate their biofuel production potential. Biomass Convers Biorefinery 4:1–7

  107. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353

    Article  Google Scholar 

  108. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  Google Scholar 

  109. Sankaran R, Cruz RAP, Pakalapati H, Show PL, Ling TC, Chen W-H, Tao Y (2020) Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresource Technol 298:122476

    Article  Google Scholar 

  110. Saricks C, Santini D, Wang M (1999) Effects of fuel ethanol use on fuel-cycle energy and greenhouse gas emissions. Argonne National Lab., IL (US)

  111. Sarkar S, Kumar A, Sultana A (2011) Biofuels and biochemicals production from forest biomass in Western Canada. Energy 36:6251–6262

    Article  Google Scholar 

  112. Sawan SP, Sawan SP (1998) Supercritical fluid cleaning: fundamentals, technology and applications. Elsevier

    Google Scholar 

  113. Schmitt E, Bura R, Gustafson R, Cooper J, Vajzovic A (2012) Converting lignocellulosic solid waste into ethanol for the State of Washington: an investigation of treatment technologies and environmental impacts. Biores Technol 104:400–409. https://doi.org/10.1016/j.biortech.2011.10.094

    Article  Google Scholar 

  114. Shen Y (2020) A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy 134:105479

    Article  Google Scholar 

  115. Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Biores Technol 101:1570–1580

    Article  Google Scholar 

  116. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–an overview. Bioresource Technol 199:76–82

    Article  Google Scholar 

  117. Singh A, Pant D, Korres NE, Nizami A-S, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Biores Technol 101:5003–5012

    Article  Google Scholar 

  118. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M (2018) Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Bioresource Technol 250:860–867

    Article  Google Scholar 

  119. Siqueira JGW, Rodrigues C, de Souza Vandenberghe LP, Woiciechowski AL, Soccol CR (2020) Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy 132:105419

    Article  Google Scholar 

  120. Sun N, Rodríguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421

    Article  Google Scholar 

  121. Szambelan K, Nowak J, Frankowski J, Szwengiel A, Jeleń H, Burczyk H (2018) The comprehensive analysis of sorghum cultivated in Poland for energy purposes: separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods and their impact on bioethanol effectiveness and volatile by-products from the grain and the energy potential of sorghum straw. Biores Technol 250:750–757

    Article  Google Scholar 

  122. Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38:190–197

    Article  Google Scholar 

  123. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  124. Takacs E, Wojnarovits L, Földváry C, Hargittai P, Borsa J, Sajo I (2000) Effect of combined gamma-irradiation and alkali treatment on cotton–cellulose. Radiat Phys Chem 57:399–403

    Article  Google Scholar 

  125. Torres W, Pansare SS, Goodwin JG Jr (2007) Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev 49:407–456

    Article  Google Scholar 

  126. Tran D-T, Yet-Pole I, Lin C-W (2013) Developing co-culture system of dominant cellulolytic Bacillus sp. THLA0409 and dominant ethanolic Klebsiella oxytoca THLC0409 for enhancing ethanol production from lignocellulosic materials. J Taiwan Inst Chem Eng 44:762–769

    Article  Google Scholar 

  127. Ubando AT, Felix CB, Chen W-H (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresource Technol 299:122585

    Article  Google Scholar 

  128. Valdés G, Mendonça RT, Aggelis G (2020) Lignocellulosic biomass as a substrate for oleaginous microorganisms: a review. Appl Sci 10:7698

    Article  Google Scholar 

  129. Verardi A, Lopresto CG, Blasi A, Chakraborty S, Calabrò V (2020) Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. In: Lignocellulosic Biomass to Liquid Biofuels. Elsevier, pp 67–125

  130. van Rossum G, Zhao W, Castellvi Barnes M, Lange JP, Kersten SR (2014) Liquefaction of lignocellulosic biomass: solvent, process parameter, and recycle oil screening. ChemSusChem 7:253–259

    Article  Google Scholar 

  131. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  Google Scholar 

  132. Wyman C (1996) Handbook on bioethanol: production and utilization. CRC Press

    Google Scholar 

  133. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee Y (2005) Coordinated development of leading biomass pretreatment technologies. Biores Technol 96:1959–1966

    Article  Google Scholar 

  134. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol Biofuels. Bioproducts Bioref 2:26–40

    Article  Google Scholar 

  135. Zabed H, Sahu J, Boyce A, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774

    Article  Google Scholar 

  136. Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R (2010) Ionic liquid-mediated formation of 5-hydroxymethylfurfural-A promising biomass-derived building block. Chem Rev 111:397–417

    Article  Google Scholar 

  137. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products, vol 13. Elsevier

    Google Scholar 

  138. Zhang B, von Keitz M, Valentas K (2009) Thermochemical liquefaction of high-diversity grassland perennials. J Anal Appl Pyrol 84:18–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Sattar Jatoi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatoi, A.S., Abbasi, S.A., Hashmi, Z. et al. Recent trends and future perspectives of lignocellulose biomass for biofuel production: a comprehensive review. Biomass Conv. Bioref. 13, 6457–6469 (2023). https://doi.org/10.1007/s13399-021-01853-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01853-8

Keywords

Navigation