Skip to main content
Log in

Ultrasonic enhancement of lipase-catalyzed transesterification for biodiesel production from used cooking oil

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This work investigated the ultrasonic irradiation-enhanced transesterification using lipase from the viscera of Nile tilapia (Oreochromis niloticus) to produce biodiesel from used cooking oil (UCO) and methanol. The effects of processing conditions such as irradiation time, ultrasonic frequency, and temperature on biodiesel yield were investigated. Results showed that the use of ultrasound decreased the reaction time from 28 to 3 h with ultrasonic frequency of 16 kHz, methanol to oil molar ratio of 4:1, lipase concentration of 30 kUnit, and reaction temperature of 40 °C. The efficacy of ultrasound was compared with conventional mechanical stirring operated at optimum conditions, and the ultrasonic irradiation coupled with stirring enhanced the transesterification with the highest yield of 97.59%. The fuel properties of the produced biodiesel in this study desirably met the recommended biodiesel standards as prescribed by EN 14214 and ASTM D 6751, suggesting the biodiesel obtained from ultrasound-assisted lipase-catalyzed transesterification of UCO with methanol is a promising alternative for conventional biodiesels and diesels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data will be available on request.

References

  1. Galvão WS, Phnheiro BB, Golçalves LRB, de Mattos MC, Fonseca TS, Regis T, Zampieri D, dos Santos JCS, Costa LS, Correa MA, Bohn F, Fechine PBA (2018) Novel nanohybrid biocatalyst: application in the kinetic resolution of secondary alcohols. J Mater Sci. https://doi.org/10.1007/s10853-018-2641-5

    Article  Google Scholar 

  2. Lima PJM, da Silva RM, Neto CACG, e Silva NCG, Souza JES, Nunes YL, dos Santos JCS (2021) An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2098

    Article  Google Scholar 

  3. Wei W, Sun C, Wang X, Jin Q, Xu X, Akoh CC, Wang X (2020) Lipase-catalyzed synthesis of Sn-2 palmitate: a review. Engineering 6:406–414. https://doi.org/10.1016/j.eng.2020.02.008

    Article  Google Scholar 

  4. Lima GV, da Silva MR, Fonseca TS, de Lima LB, de Oliveira MCF, de Lemos TLG, Zampieri D, dos Santos JCS, Rios NS, Gonçalves LRB, Molinari F, de Mattos MC (2017) Chemoenzymatic synthesis of (S)-pindolol using lipase. Appl Catal A. https://doi.org/10.1016/j.apcata.2017.08.003

    Article  Google Scholar 

  5. de Oliveira ALB, Cavalcante FTT, Moreira KS, Monteiro RRC, Thales G. Rocha TG, Souza JES, da Fonseca AM, Lopes AAS, Guimarães AP, de Lima RKC, de Souza MCM, dos Santosa JCS (2021) Lipases immobilized onto nanomaterials as biocatalysts in biodiesel production: scientific context, challenges, and opportunities. Rev. Virtual Quim. 1-17. https://doi.org/10.21577/1984-6835.20210019

  6. Cavalcante FTT, Neto FS, Falcão IRA, da Silva Souza JE, Junior LSM, Sousa PS, Rocha TG, de Sousa IG, Gomes PHL, de Souza MCM, dos Santos JCS (2021) Opportunities for improving biodiesel production via lipase catalysis. Fuel 288:119577. https://doi.org/10.1016/j.fuel.2020.119577

    Article  Google Scholar 

  7. Pinheiro MP, Rios NS, Fonseca TS, Bezerra FA, Rodríguez-Castellón E, Fernandez-Lafuente R, de Mattos MC, dos Santos JCS, Gonçalves LRB (2018) Kinetic resolution of drug intermediates catalyzed by lipase B from Candida Antarctica immobilized on Immobead-350. Biotechnol Progr. https://doi.org/10.1002/btpr.2630

    Article  Google Scholar 

  8. Bilala M, Fernandes CD, Mehmood T, Nadeem F, Tabassam Q, Ferreira LFR (2021) Immobilized lipases-based nano-biocatalytic systems - a versatile platform with incredible biotechnological potential. Int J Biol 175:108–122. https://doi.org/10.1016/j.ijbiomac.2021.02.010

    Article  Google Scholar 

  9. Patchimpet J, Sangkharak K, Klomklao S (2021) Thermoseparating aqueous two-phase system for lipase recovery and partitioning from Nile tilapia viscera: biochemical properties and effect of ultrasound. J Mol Liq 331:115721. https://doi.org/10.1016/j.molliq.2021.115721

    Article  Google Scholar 

  10. Wang X, Xu X, Wang Q, Huang Z, He J, Qiu T (2020) Fatty acid methyl ester synthesis through transesterification of palm oil with methanol in microchannels: flow pattern and reaction kinetics. Energy Fuels 34:3628–3639. https://doi.org/10.1021/acs.energyfuels.9b03365

    Article  Google Scholar 

  11. Atadashi IM, Aroua MK, Aziz AA (2010) High quality biodiesel and its diesel engine application: a review. Renew Sust Energ Rev 14:1999–2008. https://doi.org/10.1016/j.rser.2010.03.020

    Article  Google Scholar 

  12. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15. https://doi.org/10.1016/S0960-8524(99)00025-5

    Article  Google Scholar 

  13. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416. https://doi.org/10.1016/S1389-1723(01)80288-7

    Article  Google Scholar 

  14. Wang W, Li L, Wang X, Qiu T, Yang J, Ye C (2020) Reaction kinetic studies on the immobilized-lipase catalyzed enzymatic resolution of 1-phenylethanol transesterification with ethyl butyrate. Biocatal Biotransform. https://doi.org/10.1080/10242422.2020.1855150

    Article  Google Scholar 

  15. Quayson E, Amoah J, Hama S, Kondo A, Ogino C (2020) Immobilized lipases for biodiesel production: Current and future greening opportunities. Renew Sustain Energy Rev 134:110355. https://doi.org/10.1016/j.rser.2020.110355

    Article  Google Scholar 

  16. Rocha TG, Gomes PHL, de Souza MCM, Monteiro RRC, dos Santos JCS (2020) Lipase cocktail for optimized biodiesel production of free fatty acids from residual chicken oil. Catal Letters. https://doi.org/10.1007/s10562-020-03367-w

    Article  Google Scholar 

  17. Shahedi M, Habibi Z, Yousefi M, Brask J, Mohammadi M (2021) Improvement of biodiesel production from palm oil by co-immobilization of Thermomyces lanuginosa lipase and Candida antarctica lipase B: optimization using response surface methodology. Int J Biol Macromol 170:490–502. https://doi.org/10.1016/j.ijbiomac.2020.12.181

    Article  Google Scholar 

  18. Moreira KS, Júnior LSM, Monteiro RRC, de Oliveira ALB, Valle CP, Freire TM, Fechine PBA, de Souza MCM, Fernandez-Lorente G, Guisan JM, dos Santos JCS (2020) Optimization of the production of enzymatic biodiesel from residual babassu oil (Orbignya sp.) via RSM. Catalysts. https://doi.org/10.3390/catal10040414

    Article  Google Scholar 

  19. Chang MY, Chan ES, Song CP (2021) Biodiesel production catalysed by low-cost liquid enzyme Eversa® Transform 2.0: effect of free fatty acid content on lipase methanol tolerance and kinetic model. Fuel. 283:119266. https://doi.org/10.1016/j.fuel.2020.119266

    Article  Google Scholar 

  20. Yu D, Tian L, Wu K, Wang S, wang Y, Ma D, Fang X, (2010) Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochem 45:519–525. https://doi.org/10.1016/j.procbio.2009.11.012

    Article  Google Scholar 

  21. Kuepethkaew S, Sangkharak K, Benjakul S, Klomklao S (2017) Optimized synthesis of biodiesel using lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas. Renew Energy 104:139–147. https://doi.org/10.1016/j.renene.2016.12.014

    Article  Google Scholar 

  22. Kimtun P, Yunu T, Paichid N, Klomklao S, Prasertsan P, Sangkharak K (2017) Study of chemical constituents from palm fruit (Elaeis guineensis) after harvesting and the application of palm lipase for biodiesel production. Thaksin Univ J 20:1–9

    Google Scholar 

  23. Sonare NR, Rathod VK (2010) Transesterification of used sunflower oil using immobilized enzyme. J Mol Catal B: Enzym 66:142–147. https://doi.org/10.1016/j.molcatb.2010.04.009

    Article  Google Scholar 

  24. Patchimpet J, Sangkharak K, Klomklao S (2020) Optimization of process variables for the production of biodiesel by transesterification of used cooking oil using lipase from Nile tilapia viscera. Renew Energy 153:861–869. https://doi.org/10.1016/j.renene.2020.02.039

    Article  Google Scholar 

  25. Gharat N, Rathod VK (2013) Ultrasound assisted enzyme catalyzed transesterification of waste of waste cooking oil with dimethyl carbonate. Ultrason Sonochem 20:900–905. https://doi.org/10.1016/j.ultsonch.2012.10.011

    Article  Google Scholar 

  26. Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306. https://doi.org/10.1016/j.tibtech.2009.02.001

    Article  Google Scholar 

  27. Batistella L, Lerin LA, Brugnerotto P, Danielli AJ, Trentin CM, Popiolski A, Treichel H, Oliveira JV, Dde Oliveira (2012) Ultrasound-assisted lipase-catalyzed transesterification of soy bean oil in organic solvent system. Ultrason Sonochem 19:452–458

    Article  Google Scholar 

  28. Patchimpet J, Sangkharak K, Klomklao S (2019) Lipolytic activity of viscera extract from three freshwater fish species in Phatthalung, Thailand: comparative studies and potential use as dishwashing detergent additive. Biocatal Agric Biotechnol 19:101143. https://doi.org/10.1016/j.bcab.2019.101143

    Article  Google Scholar 

  29. Klomklao S, Benjakul S, Kishimura H (2010) Proteinases in hybrid catfish viscera: characterization and effect of extraction media. J Food Biochem 34:711–729. https://doi.org/10.1111/j.1745-4514.2009.00310.x

    Article  Google Scholar 

  30. Klomklao S, Benjakul S (2018) Two trypsin isoforms from albacore tuna (Thunnus alalunga) liver: purification and physicochemical and biochemical characterization. Int J Biol Marcromol 107:1864–1870. https://doi.org/10.1016/j.ijbiomac.2017.10.059

    Article  Google Scholar 

  31. Bhangu SK, Gupta S, Ashokkumar M (2017) Ultrasonic enhancement of lipase-catalyzed transesterification for biodiesel synthesis. Ultrason Sonochem 34:305–309. https://doi.org/10.1016/j.ultsonch.2016.06.005

    Article  Google Scholar 

  32. Sivaramakrishnan R, Incharoensakdi A (2017) Direct transesterification of Botryococcus sp. catalyzed by immobilized lipase: ultrasound treatment can reduce reaction time with high yield of methyl ester. Fuel 191:363–370. https://doi.org/10.1016/j.fuel.2016.11.085

    Article  Google Scholar 

  33. Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715. https://doi.org/10.1021/ie010096l

    Article  Google Scholar 

  34. Veljkovíć VB, Avramovíć JM, Stamenkovíć OS (2012) Biodiesel production by ultrasound-assisted transesterification: state of the art and the perspectives. Renewable Sustainable Energy Rev 16:1193–1209. https://doi.org/10.1016/j.rser.2011.11.022

    Article  Google Scholar 

  35. Mahamuni NN, Adewuyi YG (2010) Application of Taguchi method to investigate the effects of process parameters on the transesterification of soybean oil using high frequency ultrasound. Energy Fuels 24:2120–2126. https://doi.org/10.1021/ef901488g

    Article  Google Scholar 

  36. Tomke PD, Rathod VK (2015) Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium. Ultrason Sonochem 27:241–246. https://doi.org/10.1016/j.ultsonch.2015.04.022

    Article  Google Scholar 

  37. Sim JH, Kamaruddin AH, Bhatia S (2010) Biodiesel (FAME) productivity, catalytic efficiency and thermal stability of lipozyme TL IM for crude palm oil transesterification with methanol. J Am Oil Chem Soc 27:1027–1034. https://doi.org/10.1007/s11746-010-1593-y

    Article  Google Scholar 

  38. Waghmare GV, Rathod VK (2016) Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. UltrasonSonochem 32:60–67. https://doi.org/10.1016/j.ultsonch.2016.01.033

    Article  Google Scholar 

  39. Sanchez A, Cruz J, Rueda N, dos Santos JCS, Torres R, Ortiz C, Villalong R, Fernandez-Lafuente R (2016) Inactivation of immobilized trypsin under dissimilar conditions produces trypsin molecules with different structures. RSC Adv 6:27329–27334. https://doi.org/10.1039/c6ra03627a

    Article  Google Scholar 

  40. Santos HM, Lodeiro C, Capelo-Martinez JI (2009) Ultrasound in chemistry: Analytical applications. In: Capelo-Martinez JL (ed) The power of ultrasound, Wiley-VCH Verlag GmbH & Co, KGaA, pp 1–16. 

  41. Charpe T, Rathod V (2012) Extraction of glycyrrhizic acid from licorice root using ultrasound: process intensification studies. ChemEng Process 54:37–41. https://doi.org/10.1016/j.cep.2012.01.002

    Article  Google Scholar 

  42. Alissandrakis E, Daferera D, Tarantilis P, Polissiou M, Harizanis P (2005) Evaluation of four isolation techniques for honey aroma compounds. J Food Chem 8:575–582. https://doi.org/10.1002/jsfa.1934

    Article  Google Scholar 

  43. Noureddini H, Zhu D (1997) Kinetics of transesterification of soy bean oil. J Am Oil Chem Soc 74:1457–1463. https://doi.org/10.1007/s11746-997-0254-2

    Article  Google Scholar 

  44. Hanh HD, Dong NT, Okitsu K, Nishimura R, Maeda Y (2009) Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition. Renewable Energy 34:780–783. https://doi.org/10.1016/j.renene.2008.04.001

    Article  Google Scholar 

  45. Choedkiatsakul I, Ngaosuwan K, Cravotto G, Assabumrungrat S (2014) Biodiesel production from palm oil using combined mechanical stirred and ultrasonic reactor. Ultrason Sonochem 21:1585–1591. https://doi.org/10.1016/j.ultsonch.2013.12.025

    Article  Google Scholar 

  46. Ebrahimi S, Najafpour GD, Ardestani F (2017) Transesterification of waste cooking sunflower oil by porcine pancreas lipase using response surface methodology for biodiesel production. Appl Food Biotechnol 4:203–210. https://doi.org/10.22037/afb.v4i4.16904

    Article  Google Scholar 

  47. Fereidooni L, Mehrpooya M (2017) Experimental assessment of electrolysis method in production of biodiesel from waste cooking oil using zeolite/chitosan catalyst with a focus on waste biorefinery. Energy Convers Manage 147:145–154. https://doi.org/10.1016/j.enconman.2017.05.051

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Research Council of Thailand, Thailand, as of fiscal year 2019 and Thaksin University, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Jaran Patchimpet: investigation, methodology, and writing — original draft. Yi Zhang: methodology and writing — revision. Benjamin K. Simpson: writing — review and editing. Xin Rui: methodology. Kanokphorn Sangkharak: software. Apiluck Eiad-ua: laboratory analysis. Sappasith Klomklao: conceptualization, investigation, and writing — review and editing.

Corresponding author

Correspondence to Sappasith Klomklao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Enzyme-catalyzed biodiesel synthesis from used cooking oil using ultrasonication.

• With ultrasonic irradiation, 97.59% yield was obtained in 3 h.

• Ultrasound significantly reduced reaction time as compared to conventional method.

• Ultrasonic method gave significant benefits than conventional stirring method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patchimpet, J., Zhang, Y., Simpson, B.K. et al. Ultrasonic enhancement of lipase-catalyzed transesterification for biodiesel production from used cooking oil. Biomass Conv. Bioref. 13, 8151–8160 (2023). https://doi.org/10.1007/s13399-021-01790-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01790-6

Keywords

Navigation