Skip to main content
Log in

Factorial design of experiments for extraction and screening analysis of organic compounds in hydrochar and its process water of sugar cane bagasse and vinasse

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The extraction of non-volatile (NVOC), semi-volatile (SVOC), and volatile (VOC) organic compounds in water and soil samples follows well-defined protocols, already described in the specialized literature. However, for environmental matrices that are either new, complex, or difficult to define, an adaptation of the extraction procedures needs to be made. Thus, the main purpose of this paper was to find the best conditions for the extraction of NVOC, SVOC, and VOC in complex matrix samples (hydrochar-HC and process water-PW) resulting from the hydrothermal carbonization of sugar cane bagasse and vinasse. For this, a factorial design (FD) was carried out for each type of extraction and sample. Solvent and temperature were the most determining parameters for the extraction processes. The best extraction conditions for NVOC from HC were obtained using acetone, during 8 h of reflux at Soxhlet and 1.00 g of HC (50 NVOCs), while for SVOC the best conditions were those using acetone, 40 min of ultrasound, and 1.00 g of HC (50 SVOCs). For NVOC from PW, the derivatization conditions that allowed the best extraction were found at 80 °C, 30 min, and 150 μL of PW (36 NVOCs), while for SVOC, the best conditions of extraction were those using dichloromethane and 20 min in single extraction (34 SVOCs). For VOC from HC, the best conditions were 80 °C and 30 min (39 VOCs), while, from PW, these were 40 °C and 30 min (48 VOCs) of headspace equilibrium. In this way, FD enabled the adaptation of the extraction procedures for hydrochar and process water, making screening by gas chromatography-mass spectrometry (GC-MS) analysis possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cai J, Li B, Chen C, Wang J, Zhao M, Zhang K (2016) Hydrothermal carbonization of tobacco stalk for fuel application. Bioresour Technol 220:305–311. https://doi.org/10.1016/j.biortech.2016.08.098

    Article  Google Scholar 

  2. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177. https://doi.org/10.1002/bbb.198

  3. Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102:9255–9260. https://doi.org/10.1016/j.biortech.2011.06.099

    Article  Google Scholar 

  4. Hoekman SK, Broch A, Robbins C (2010) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuel 25:1802–1810

    Article  Google Scholar 

  5. Xiao L-P, Shi Z-J, Xu F, Sun R-C (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623. https://doi.org/10.1016/j.biortech.2012.05.060

    Article  Google Scholar 

  6. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon N Y 47:2281–2289. https://doi.org/10.1016/j.carbon.2009.04.026

    Article  Google Scholar 

  7. Falco C, Baccile N, Titirici M (2011) Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem 13:3273–3281

    Article  Google Scholar 

  8. Silva CC, Melo CA, Soares Junior FH, Moreira AB, Ferreira OP, Bisinoti MC (2017) Effect of the reaction medium on the immobilization of nutrients in hydrochars obtained using sugarcane industry residues. Bioresour Technol 237:213–221. https://doi.org/10.1016/j.biortech.2017.04.004

    Article  Google Scholar 

  9. Melo CA, Junior FHS, Bisinoti MC, Moreira AB, Ferreira OP (2017) Transforming sugarcane bagasse and vinasse waste into hydrochar in the presence of phosphoric acid: an evaluation of nutrient contents and structural properties. Waste Biomass Valorization 8:1–13. https://doi.org/10.1007/s12649-016-9664-4

    Article  Google Scholar 

  10. Bento LR, Castro AJR, Moreira AB, Ferreira OP, Bisinoti MC, Melo CA (2019) Release of nutrients and organic carbon in different soil types from hydrochar obtained using sugar cane bagasse and vinasse. Geoderma 334:24–32. https://doi.org/10.1016/j.geoderma.2018.07.034

    Article  Google Scholar 

  11. Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: process water characterization and effects of water recirculation. Bioresour Technol 143:139–146. https://doi.org/10.1016/j.biortech.2013.05.098

    Article  Google Scholar 

  12. Poerschmann J, Weiner B, Koehler R, Kopinke FD (2015) Organic breakdown products resulting from hydrothermal carbonization of brewer’s spent grain. Chemosphere 131:71–77. https://doi.org/10.1016/j.chemosphere.2015.02.057

    Article  Google Scholar 

  13. Fregolente LG, Miguel TBAR, de Castro ME et al (2019) Toxicity evaluation of process water from hydrothermal carbonization of sugar cane industry by-products. Environ Sci Pollut Res 26:27579–27589. https://doi.org/10.1007/s11356-018-1771-2

    Article  Google Scholar 

  14. Danso-Boateng E, Shama G, Wheatley AD, Martin SJ, Holdich RG (2015) Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production. Bioresour Technol 177:318–327. https://doi.org/10.1016/j.biortech.2014.11.096

    Article  Google Scholar 

  15. Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, DuSaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85:869–882. https://doi.org/10.1016/j.chemosphere.2011.06.108

    Article  Google Scholar 

  16. Becker R, Dorgerloh U, Helmis M, Mumme J, Diakité M, Nehls I (2013) Hydrothermally carbonized plant materials: patterns of volatile organic compounds detected by gas chromatography. Bioresour Technol 130:621–628. https://doi.org/10.1016/j.biortech.2012.12.102

    Article  Google Scholar 

  17. Skoog DA, West DM, Holler FJ, Crouchey SR (2013) Cromatografia Gasosa. In: Fundamentos de Química Analítica, 8th edn. CENGAGE Learning, São Paulo, pp 899–923

    Google Scholar 

  18. Becker R, Dorgerloh U, Paulke E, Mumme J, Nehls I (2014) Hydrothermal carbonization of biomass : major organic components of the aqueous phase. Chem Eng Technol 37:511–518. https://doi.org/10.1002/ceat.201300401

    Article  Google Scholar 

  19. Uekane TM, Rocha-leão MHM, Rezende M (2013) Compostos Sulfurados no Aroma do Café : Origem e Degradação. Rev Virtual Química 5:891–911. https://doi.org/10.5935/1984-6835.20130064

    Article  Google Scholar 

  20. Priyangini F, Walde SG, Chidambaram R (2018) Extraction optimization of pectin from cocoa pod husks (Theobroma cacao L.) with ascorbic acid using response surface methodology. Carbohydr Polym 202:497–503. https://doi.org/10.1016/j.carbpol.2018.08.103

    Article  Google Scholar 

  21. Casagrande M, Zanela J, Wagner A et al (2018) Influence of time, temperature and solvent on the extraction of bioactive compounds of Baccharis dracunculifolia: in vitro antioxidant activity, antimicrobial potential, and phenolic compound quantification. Ind Crop Prod 125:207–219. https://doi.org/10.1016/j.indcrop.2018.08.088

    Article  Google Scholar 

  22. Berger-Brito I, Machour N, Morin C, Portet-Koltalo F (2018) Experimental designs for optimizing multi-residual microwave-assisted extraction and chromatographic analysis of oxygenated (Hydroxylated, Quinones) metabolites of PAHs in sediments. Chromatographia 81:1401–1412. https://doi.org/10.1007/s10337-018-3584-3

    Article  Google Scholar 

  23. Antony J (2014) Full factorial designs. In: Antony J (org) Design of experiments for engineers and scientists, 2nd. edn. Elsevier Ltd, Waltham, pp 63–85. https://doi.org/10.1016/C2012-0-03558-2

  24. United States Environmental Protection Agency (1996) SW-846 Test Method 3540C: Soxhlet Extraction. EPA. https://www.epa.gov/hw-sw846/sw-846-test-method-3540c-soxhlet-extraction. Accessed 23 Aug 2016

  25. United States Environmental Protection Agency (2007) SW-846 Test Method 3535A: Solid-Phase Extraction. EPA. https://www.epa.gov/hw-sw846/sw-846-test-method-3535a-solid-phase-extraction-spe. Accessed 23 Aug 2016 

  26. United States Environmental Protection Agency (2007) SW-846 Test Method 3550C: Ultrasonic Extraction. EPA. https://www.epa.gov/hw-sw846/sw-846-test-method-3550c-ultrasonic-extraction. Accessed 23 Aug 2016 

  27. United States Environmental Protection Agency (1996) SW-846 Test Method 3510C: Separatory Funnel Liquid-Liquid Extraction. EPA. https://www.epa.gov/hw-sw846/sw-846-test-method-3510c-separatory-funnel-liquid-liquid-extraction. Accessed 23 Aug 2016

  28. Higashikawa FS, Cayuela ML, Roig A, Silva CA, Sánchez-Monedero MA (2013) Matrix effect on the performance of headspace solid phase microextraction method for the analysis of target volatile organic compounds (VOCs) in environmental samples. Chemosphere 93:2311–2318. https://doi.org/10.1016/j.chemosphere.2013.08.023

    Article  Google Scholar 

  29. Kubwabo C, Rasmussen PE, Fan X, Kosarac I, Grenier G, Coleman K (2016) Simultaneous quantification of bisphenol A, alkylphenols and alkylphenol ethoxylates in indoor dust by gas chromatography-tandem mass spectrometry and a comparison between two sampling techniques. Anal Methods 8:4093–4100. https://doi.org/10.1039/C6AY00774K

    Article  Google Scholar 

  30. Laborie S, Moreau-Guigon E, Alliot F, Desportes A, Oziol L, Chevreuil M (2016) A new analytical protocol for the determination of 62 endocrine-disrupting compounds in indoor air. Talanta 147:132–141. https://doi.org/10.1016/j.talanta.2015.09.028

    Article  Google Scholar 

  31. Rossignol S, Couvidat F, Rio C, Fable S, Grignion G, Savelli, Pailly O, Leoz-Garziandia E, Doussin JF, Chiappini L (2016) Organic aerosol molecular composition and gas-particle partitioning coefficients at a Mediterranean site (Corsica). J Environ Sci (China) 40:92–104. https://doi.org/10.1016/j.jes.2015.11.017

    Article  Google Scholar 

  32. Shahidi F, Naczk M (1995) Food phenolics: sources, chemistry, effects and applications. Technomic Publishing Co., Lancaster, p 331

  33. Genuino DAD, Bataller BG, Capareda SC, De Luna MDG (2017) Application of artificial neural network in the modelling and optimization of humic acid extraction from municipal solid waste biochar. J Environ Chem Eng 5:4101–4107. https://doi.org/10.1016/j.jece.2017.07.071

    Article  Google Scholar 

Download references

Funding

The authors received financial support and scholarship from the São Paulo Research Foundation—FAPESP (Grants 2005/51242-8, 2011/00574-1, 2012/23066-4, 2013/21776-7, 2014/22400-3, 2017/13230-5, 2015/22954-1, 2017/26718-6, and 2018/15733-7). M. C. B. acknowledged support from the National Council for Scientific and Technological Development—CNPq (grants 445487/2014-3 and 307925/2012-9). O. P. F. acknowledged the support from the Ceará State Foundation for Scientific and Technological Development—FUNCAP (PRONEX PR2-0101-00006.01.00/15), and from CAPES-PROCAD (Council for the Enhancement of Higher Level Personnel/Program in National Defence) 2013 Grant 183995. M. J. L. and R. C. J. S. thanked CAPES for the master scholarship received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Márcio Justi Laranja or Camila de Almeida Melo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laranja, M.J., da Silva, R.C.J., Bisinoti, M.C. et al. Factorial design of experiments for extraction and screening analysis of organic compounds in hydrochar and its process water of sugar cane bagasse and vinasse. Biomass Conv. Bioref. 12, 81–90 (2022). https://doi.org/10.1007/s13399-020-01035-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01035-y

Keywords

Navigation