Skip to main content

Advertisement

Log in

Microbial electrolysis cells and microbial fuel cells for biohydrogen production: current advances and emerging challenges

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFC) and microbial electrolysis cells (MEC) are developing as sustainable power source technologies that can be utilized for feasible wastewater treatment and hydrogen production. Hydrogen gas has immense potential as an ecologically adequate energy carrier for vehicles. MFC is bioelectrochemical process that utilize microorganism as the impetuses to oxidize organic and inorganic matter and create electricity, whereas MEC are a reactor for biohydrogen production by combining MFC and electrolysis. MEC and MFC have been the cleanest, eco-friendly, and efficient method for biohydrogen production. The basic mechanism and thermodynamic principles involved in the production of hydrogen have been discussed in brief. Effective factors influencing H2 production such as microbial population, electrodes, membrane, and substrate were elaborated and recent advances in the factors have been explored for the better understanding of developing MFC and MEC technology-based hydrogen generation. This review completes a brief outline of topical advances in the MFC, MEC setup, and different operational parameters which influencing hydrogen production (ionic strength, applied voltage, organic loading, and hydraulic retention time). The review describes the current challenges involved in the technology used and provides effective future perspectives for overcoming the limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Banu JR, Yukesh Kannah R, Dinesh Kumar M, Gunasekaran M, Sivagurunathan P, Park JH, Kumar G (2018) Recent advances on biogranules formation in dark hydrogen fermentation system: mechanism of formation and microbial characteristics. Bioresour Technol 268:787–796. https://doi.org/10.1016/j.biortech.2018.07.034

    Article  Google Scholar 

  2. Rajesh Banu J, Kavitha S, Yukesh Kannah R, Bhosale RR, Kumar G (2019) Industrial wastewater to biohydrogen: possibilities towards successful biorefinery route. Bioresour Technol 298:122378. https://doi.org/10.1016/j.biortech.2019.122378

    Article  Google Scholar 

  3. Ladole MR, Mevada JS, Pandit AB (2017) Ultrasonic hyperactivation of cellulose immobilized on magnetic nanoparticles. Bioresour Technol 239:117–126. https://doi.org/10.1016/j.biortech.2017.04.096

    Article  Google Scholar 

  4. Srivastava N, Srivastava M, Mishra PK, Kausar MA, Saeed M, Gupta VK, Singh R, Ramteke PW (2020) Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresour Technol 307:123094. https://doi.org/10.1016/j.biortech.2020.123094

    Article  Google Scholar 

  5. Srivastava N, Srivastava M, Malhotra BD, Gupta VK, Ramteke PW, Silva RN, Shukla P, Dubey KK, Mishra PK (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach. Biotechnol Adv 37:107384. https://doi.org/10.1016/j.biotechadv.2019.04.006

    Article  Google Scholar 

  6. Sekoai PT, Ouma CNM, du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397. https://doi.org/10.1016/j.fuel.2018.10.030

    Article  Google Scholar 

  7. Parkhey P, Gupta P (2017) Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review. Renew Sust Energ Rev 69:1085–1099. https://doi.org/10.1016/j.rser.2016.09.101

    Article  Google Scholar 

  8. Hallenbeck P (2011) Microbial paths to renewable hydrogen production. Biofuels 2:285–302

    Article  Google Scholar 

  9. Dincer I (2012) Green methods for hydrogen production. Int J Hydrog Energy 37:1954–1971. https://doi.org/10.1016/j.ijhydene.2011.03.173

    Article  Google Scholar 

  10. Yuan T, Bia S, Ko JH, Wu H, Xu Q (2019) Enhancement of hydrogen production using untreated inoculum in two-stage food waste digestion. Bioresour Technol 282:189–196. https://doi.org/10.1016/j.biortech.2019.03.020

    Article  Google Scholar 

  11. Zhao L, Cao GL, Sheng T, Ren HY, Wang AJ, Zhang J, Zhong YJ, Ren NQ (2017) Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate. Bioresour Technol 243:548–555. https://doi.org/10.1016/j.biortech.2017.06.161

    Article  Google Scholar 

  12. Kadier A, Simayi Y, Kalil MS, Abdeshahian P, Hamid AA (2014) A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew Energy 71:466–472. https://doi.org/10.1016/j.renene.2014.05.052

    Article  Google Scholar 

  13. Rollin JA, del Campo JM, Myung S, Sun F, You C, Bakovic A, Castro R, Chandrayan SK, Wu CH, Adams MWW, Senger RS, Zhang YHP (2015) High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Natl Acad Sci U S A 112(16):4964–4969

    Article  Google Scholar 

  14. Junghare M, Subudhi S, Lal B (2012) Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. Int J Hydrog Energy 37(4):3160–3168. https://doi.org/10.1016/j.ijhydene.2011.11.043

    Article  Google Scholar 

  15. Adekunle A, Raghavan V, Tartakovsky B (2019) A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring. Bioelectrochem 126:105–112. https://doi.org/10.1016/j.bioelechem.2018.11.007

    Article  Google Scholar 

  16. Sivasankar P, Poongodi S, Seedevi P, Sivakumar M, Murugan T, Loganathan S (2019) Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept. J Environ Manag 237:84–93. https://doi.org/10.1016/j.jenvman.2019.01.075

    Article  Google Scholar 

  17. Chakraborty I, Sathe SM, Khuman CN, Ghangrekar MM (2020) Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell. Mater Sci Energy Technol 3:104–115. https://doi.org/10.1016/j.mset.2019.09.011

    Article  Google Scholar 

  18. Mohanakrishna G, Seelam JS, Vanbroekhoven K, Pant D (2015) An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss 183:445–462. https://doi.org/10.1039/C5FD00041F

    Article  Google Scholar 

  19. Kim HB, Lim SS, Wan Daud RW, Gadd MG, Chang IS (2015) The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresour Technol 190:395–401. https://doi.org/10.1016/j.biortech.2015.04.084

    Article  Google Scholar 

  20. Gupta P, Parkhey P (2015) Design of a single chambered microbial electrolytic cell reactor for production of biohydrogen from rice straw hydrolysate. Biotechnol Lett 37(6):1213–1219. https://doi.org/10.1007/s10529-015-1780-x

    Article  Google Scholar 

  21. Wang H, Qian F, Wang G, Jiao Y, He Z, Li Y (2013) Self-biased solar-microbial device for sustainable hydrogen generation. ACS Nano 7:8728–8735. https://doi.org/10.1021/nn403082m

    Article  Google Scholar 

  22. Kumar G, Saratale RG, Kadier A, Sivagurunathan P, Zhen G, Kim SH, Saratale GD (2017) A review on bio-electrochemical systems (BESs) for the syngas and value added biochemicals production. Chemosphere. 177:84–92. https://doi.org/10.1016/j.chemosphere.2017.02.135

    Article  Google Scholar 

  23. Kadier A, Simayi Y, Chandrasekhar K, Ismail M, Kalil MS (2015) Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC). Int J Hydrog Energy 40(41):14095–14103. https://doi.org/10.1016/j.ijhydene.2015.08.095

    Article  Google Scholar 

  24. Show KY, Yan YG, Ling M, Ye GX, Li T, Lee DJ (2018) Hydrogen production from microalgal biomass – advances, challenges and prospects. Bioresour Technol 257:290–300. https://doi.org/10.1016/j.biortech.2018.02.105

    Article  Google Scholar 

  25. Cerrillo M, Viñas M, Bonmatí A (2016) Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell. Bioresour Technol 219:348–356. https://doi.org/10.1016/j.biortech.2016.07.103

    Article  Google Scholar 

  26. Lee B, Park JG, Shin WB, Tian DJ, Jun HB (2017) Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells. Bioresour Technol 234:273–280. https://doi.org/10.1016/j.biortech.2017.02.022

    Article  Google Scholar 

  27. Jeremiasse AW, Hamelers HVM, Croese E, Buisman CJN (2012) Acetate enhances startup of a H2-producing microbial biocathode. Biotechnol Bioeng 109:657–664. https://doi.org/10.1002/bit.24338

    Article  Google Scholar 

  28. Xu Y, Jiang Y, Chen Y, Zhu S, Shen S (2014) Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode. Water Environ Res 86:649–653. https://doi.org/10.2175/106143014x13975035525500

    Article  Google Scholar 

  29. Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Vilajeliu-Pons A, Bañeras L, Balaguer MD, Colprim J (2014) Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells. Int J Hydrog Energy 39:1297–1305. https://doi.org/10.1016/j.ijhydene.2013.11.017

    Article  Google Scholar 

  30. Kundu A, Sahu JN, Redzwan G, Hashim MA (2013) An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int J Hydrog Energy 38(4):1745–1757. https://doi.org/10.1016/j.ijhydene.2012.11.031

    Article  Google Scholar 

  31. Bakonyi P, Kumar G, Koók L, Tóth G, Rózsenberszki T, Bélafi-Bakó K, Nemestothy N (2018) Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: a review on process characteristics, experiences and lessons. Bioresour Technol 251:381–389. https://doi.org/10.1016/j.biortech.2017.12.064

    Article  Google Scholar 

  32. Fu Q, Kobayashi H, Kuramochi Y, Xu J, Wakayama T, Maeda H, Sato K (2013) Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production. Int J Hydrog Energy 38:15638–15645. https://doi.org/10.1016/j.ijhydene.2013.04.116

    Article  Google Scholar 

  33. Ghasemi M, Daud WRW, Rahimnejad M, Rezayi M, Fatemi A, Jafari Y, Somalu MR, Manzour A (2013) Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int J Hydrog Energy 38:9533e40. https://doi.org/10.1016/j.ijhydene.2013.01.177

    Article  Google Scholar 

  34. Kumar SS, Kumar V, Malyan SK, Sharma J, Mathimani T, Maskarenj MS, Ghosh PC, Pugazhendhi A (2019) Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel 254:115526. https://doi.org/10.1016/j.fuel.2019.05.109

    Article  Google Scholar 

  35. Hussain A, Manuel M, Tartakovsky B (2016) A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells. J Environ Manag 173:23–33. https://doi.org/10.1016/j.jenvman.2016.02.025

    Article  Google Scholar 

  36. Yu Z, Leng X, Zhao S, Ji J, Zhou T, Khan A, Kakde A, Liu P, Li X (2018) A review on the applications of microbial electrolysis cells in anaerobic digestion. Bioresour Technol 255:340–348. https://doi.org/10.1016/j.biortech.2018.02.003

    Article  Google Scholar 

  37. Croese E, Jeremiasse AW, Marshall IP, Spormann AM, Euverink GJW, Geelhoed JS, Stams AJ, Plugge CM (2014) Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells. Enzym Microb Technol 61:67–75. https://doi.org/10.1016/j.enzmictec.2014.04.019

    Article  Google Scholar 

  38. Zhang Y, Angelidaki I (2014) Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res 56:11–25. https://doi.org/10.1016/j.watres.2014.02.031

    Article  Google Scholar 

  39. Sun M, Sheng GP, Mu ZX, Liu XW, Chen YZ, Wang H-L, Yu HQ (2009) Manipulating the hydrogen production from acetate in a microbial electrolysis cell–microbial fuel cell-coupled system. J Power Sources 191(2):338–343. https://doi.org/10.1016/j.jpowsour.2009.01.087

    Article  Google Scholar 

  40. Ren L, Siegert M, Ivanov I, Pisciotta JM, Logan BE (2013) Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs). Bioresour Technol 136:322–328. https://doi.org/10.1016/j.biortech.2013.03.060

    Article  Google Scholar 

  41. Liang DW, Peng SK, Lu SF, Liu YY, Lan F, Xiang Y (2011) Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization. Bioresour Technol 102:10881–10885. https://doi.org/10.1016/j.biortech.2011.09.028

    Article  Google Scholar 

  42. Li Y, Wu YN, Puranik S, Lei Y, Vadas T, Li BK (2014) Metals as electron acceptors in single-chamber microbial fuel cells. J Power Sources 269:430–439. https://doi.org/10.1016/j.jpowsour.2014.06.117

    Article  Google Scholar 

  43. Hernández-Fernández FJ, Pérez de los Ríos A, Salar-García MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Godínez C, Tomas-Alonso F, Quesada-Medina J (2015) Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process Technol 138:284–297. https://doi.org/10.1016/j.fuproc.2015.05.022

    Article  Google Scholar 

  44. Palanisamy G, Jung H-Y, Sadhasivam T, Kurkuri MD, Kim SC, Roh S-H (2019) A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod 221:598–621. https://doi.org/10.1016/j.jclepro.2019.02.172

    Article  Google Scholar 

  45. Escapa A, Mateos R, Martínez EJ, Blanes J (2016) Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew Sust Energ Rev 55:942–956. https://doi.org/10.1016/j.rser.2015.11.029

    Article  Google Scholar 

  46. Varanasi JL, Veerubhotla R, Pandit S, Das D (2019) Biohydrogen production using microbial electrolysis cell: recent advances and future prospects. In: Venkata Mohan S (ed) Microbial electrochemical technology, 5th edn. Elsevier, pp 843–869

  47. Rousseau R, Etcheverry L, Roubaud E, Basséguy R, Délia M-L, Bergel A (2020) Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint. Appl Energy 257:113938. https://doi.org/10.1016/j.apenergy.2019.113938

    Article  Google Scholar 

  48. Chen J, Xu W, Wu X, Jiaqing E, Lu N, Wang T, Zuo H (2019) System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater. Energy Convers Manag 193:52–63. https://doi.org/10.1016/j.enconman.2019.04.060

    Article  Google Scholar 

  49. Yasri N, Roberts EPL, Gunasekaran S (2019) The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Rep 5:1116–1136. https://doi.org/10.1016/j.egyr.2019.08.007

    Article  Google Scholar 

  50. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  Google Scholar 

  51. Zhang G, Zhou Y, Yang F (2019) Hydrogen production from microbial fuel cells-ammonia electrolysis cell coupled system fed with landfill leachate using Mo2C/N-doped graphene nanocomposite as HER catalyst. Electrochim Acta 299:672–681. https://doi.org/10.1016/j.electacta.2019.01.055

    Article  Google Scholar 

  52. Fischer F (2018) Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renew Sust Energ Rev 90:16–27. https://doi.org/10.1016/j.rser.2018.03.053

    Article  Google Scholar 

  53. Jayabalan T, Matheswaran M, Naina Mohammed S (2018) Biohydrogen production from sugar industry effluents using nickel based electrode materials in microbial electrolysis cell. Int J Hydrog Energy 44(32):17381–17388. https://doi.org/10.1016/j.ijhydene.2018.09.219

    Article  Google Scholar 

  54. Chaurasia AK, Goyal H, Mondal P (2019) Hydrogen gas production with Ni, Ni–Co and Ni–Co–P electrodeposits as potential cathode catalyst by microbial electrolysis cells. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.07.175

  55. Zhou R, Zhou S, He C (2020) Quantitative evaluation of effects of different cathode materials on performance in Cd(II)-reduced microbial electrolysis cells. Bioresour Technol 307:123198. https://doi.org/10.1016/j.biortech.2020.123198

    Article  Google Scholar 

  56. Ghasemi B, Yaghmaei S, Abdi K, Mardanpour MM, Haddadi SA (2019) Introducing an affordable catalyst for biohydrogen production in microbial electrolysis cells. J Biosci Bioeng 129(1):67–76. https://doi.org/10.1016/j.jbiosc.2019.07.001

    Article  Google Scholar 

  57. Jain A, He Z (2020) Improving hydrogen production in microbial electrolysis cells through hydraulic connection with thermoelectric generators. Process Biochem 94:51–57. https://doi.org/10.1016/j.procbio.2020.04.008

    Article  Google Scholar 

  58. Carlotta-Jones DI, Purdy K, Kirwan K, Stratford J, Coles SR (2020) Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics. Bioresour Technol 304:122983. https://doi.org/10.1016/j.biortech.2020.122983

    Article  Google Scholar 

  59. Pophali A, Singh S, Verma N (2020) Simultaneous hydrogen generation and COD reduction in a photoanode-based microbial electrolysis cell. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2020.01.053

  60. Cario BP, Rossi R, Kim K-Y, Logan BE (2019) Applying the electrode potential slope method as a tool to quantitatively evaluate the performance of individual microbial electrolysis cell components. Bioresour Technol 287:121418. https://doi.org/10.1016/j.biortech.2019.121418

    Article  Google Scholar 

  61. Jafary T, Wan Daud WR, Ghasemi M et al (2018) Clean hydrogen production in a full biological microbial electrolysis cell. Int J Hydrog Energy 44(58):30524–30531. https://doi.org/10.1016/j.ijhydene.2018.01.010

    Article  Google Scholar 

  62. Zikmund E, Kim K-Y, Logan BE (2018) Hydrogen production rates with closely-spaced felt anodes and cathodes compared to brush anodes in two-chamber microbial electrolysis cells. Int J Hydrog Energy 43(20):9599–9606. https://doi.org/10.1016/j.ijhydene.2018.04.059

    Article  Google Scholar 

  63. Dos Passos VF, Marcilio R, Aquino-Neto S et al (2019) Hydrogen and electrical energy co-generation by a cooperative fermentation system comprising Clostridium and microbial fuel cell inoculated with port drainage sediment. Bioresour Technol 277:94–103. https://doi.org/10.1016/j.biortech.2019.01.031

    Article  Google Scholar 

  64. Baicha Z, Salar-García MJ, Ortiz-Martínez VM et al (2016) A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol 154:104–116. https://doi.org/10.1016/j.fuproc.2016.08.017

    Article  Google Scholar 

  65. Varanasi JL, Roy S, Pandit S, Das D (2015) Improvement of energy recovery from cellobiose by thermophillic dark fermentative hydrogen production followed by microbial fuel cell. Int J Hydrog Energy 40(26):8311–8321. https://doi.org/10.1016/j.ijhydene.2015.04.124

    Article  Google Scholar 

  66. Montpart N, Rago L, Baeza JA, Guisasola A (2015) Hydrogen production in single chamber microbial electrolysis cells with different complex substrates. Water Res 68:601–615. https://doi.org/10.1016/j.watres.2014.10.026

    Article  Google Scholar 

  67. Huang J, Feng H, Huang L et al (2020) Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure. Waste Manag 103:61–66. https://doi.org/10.1016/j.wasman.2019.12.015

    Article  Google Scholar 

  68. Krishnan S, Md Din MF, Taib SM et al (2019) Accelerated two-stage bioprocess for hydrogen and methane production from palm oil mill effluent using continuous stirred tank reactor and microbial electrolysis cell. J Clean Prod 229:84–93. https://doi.org/10.1016/j.jclepro.2019.04.365

    Article  Google Scholar 

  69. Satinover SJ, Schell D, Borole AP (2019) Achieving high hydrogen productivities of 20 L/L-day via microbial electrolysis of corn stover fermentation products. Appl Energy 259:114126. https://doi.org/10.1016/j.apenergy.2019.114126

    Article  Google Scholar 

  70. Song Y-H, Hidayat S, Kim H-K, Park J-Y (2016) Hydrogen production in microbial reverse-electrodialysis electrolysis cells using a substrate without buffer solution. Bioresour Technol 210:56–60. https://doi.org/10.1016/j.biortech.2016.02.021

    Article  Google Scholar 

  71. Zhang L, Wang Y-Z, Zhao T, Xu T (2019) Hydrogen production from simultaneous saccharification and fermentation of lignocellulosic materials in a dual-chamber microbial electrolysis cell. Int J Hydrog Energy 44(57):30024–30030. https://doi.org/10.1016/j.ijhydene.2019.09.191

    Article  Google Scholar 

  72. Hassan M, Fernandez AS, San Martin I, Xie B, Moran A (2018) Hydrogen evolution in microbial electrolysis cells treating landfill leachate: dynamics of anodic biofilm. Int J Hydrog Energy 43(29):13051–13063. https://doi.org/10.1016/j.ijhydene.2018.05.055

    Article  Google Scholar 

  73. Zhen G, Kobayashi T, Lu X et al (2016) Recovery of biohydrogen in a single-chamber microbial electrohydrogenesis cell using liquid fraction of pressed municipal solid waste (LPW) as substrate. Int J Hydrog Energy 41(40):17896–17906. https://doi.org/10.1016/j.ijhydene.2016.07.112

    Article  Google Scholar 

  74. Heidrich ES, Edwards SR, Dolfing J, Cotterill SE, Curtis TP (2014) Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period. Bioresour Technol 173:87–95. https://doi.org/10.1016/j.biortech.2014.09.083

    Article  Google Scholar 

  75. Badia-Fabregat M, Rago L, Baeza JA, Guisasola A (2019) Hydrogen production from crude glycerol in an alkaline microbial electrolysis cell. Int J Hydrog Energy 44(32):17204–17213. https://doi.org/10.1016/j.ijhydene.2019.03.193

    Article  Google Scholar 

  76. Wang A, Sun D, Cao G, Wang H, Ren N, Wu W-M, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102(5):4137–4143. https://doi.org/10.1016/j.biortech.2010.10.137

    Article  Google Scholar 

  77. Lu L, Xing D, Liu B, Ren N (2012) Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells. Water Res 46:1015e26. https://doi.org/10.1016/j.watres.2011.11.073

    Article  Google Scholar 

  78. Gil-Carrera L, Escapa A, Mehta P, Santoyo G, Guiot SR, Moran A, Tartakovsky B (2013b) Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production. Bioresour Technol 130:584–591. https://doi.org/10.1016/j.biortech.2012.12.062

    Article  Google Scholar 

  79. Brooks V, Lewis AJ, Dulin P, Beegle JR, Rodriguez M, Borole AP (2018) Hydrogen production from pine-derived catalytic pyrolysis aqueous phase via microbial electrolysis. Biomass Bioenergy 119:1–9. https://doi.org/10.1016/j.biombioe.2018.08.008

    Article  Google Scholar 

  80. Shen R, Liu Z, He Y et al (2016) Microbial electrolysis cell to treat hydrothermal liquefied wastewater from cornstalk and recover hydrogen: degradation of organic compounds and characterization of microbial community. Int J Hydrog Energy 41:4132–4142. https://doi.org/10.1016/j.ijhydene.2016.01.032

    Article  Google Scholar 

  81. Satinover SJ, Elkasabi Y, Nuñez A, Rodriguez M, Borole AP (2019) Microbial electrolysis using aqueous fractions derived from Tail-gas recycle pyrolysis of willow and guayule. Bioresour Technol 274:302–312. https://doi.org/10.1016/j.biortech.2018.11.099

    Article  Google Scholar 

  82. Kuntke P, Sleutels THJA, Saakes M, Buisman CJN (2014) Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell. Int J Hydrog Energy 39(10):4771–4778. https://doi.org/10.1016/j.ijhydene.2013.10.089

    Article  Google Scholar 

  83. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD et al (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053–2063. https://doi.org/10.1016/j.biortech.2014.09.083

    Article  Google Scholar 

  84. Lu L, Xing D, Xie T, Ren N, Logan BE (2010) Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosens Bioelectron 25:2690–2695. https://doi.org/10.1016/j.bios.2010.05.003

    Article  Google Scholar 

  85. Jwa E, Yun Y-M, Kim H, Jeong N, Sik Hwang K, Yang S, Nam J-Y (2019) Energy-efficient seawater softening and power generation using a microbial electrolysis cell-reverse electrodialysis hybrid system. Chem Eng J 123480. https://doi.org/10.1016/j.cej.2019.123480

  86. Park S-G, Rhee C, Shin SG, Shin J, Mohamed HO, Choi Y-J, Chae K-J (2019) Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate. Environ Int 131:105006. https://doi.org/10.1016/j.envint.2019.105006

    Article  Google Scholar 

  87. Cai W, Zhang Z, Ren G, Shen Q, Hou Y, Ma A, Deng Y, Wang A, Liu W (2016) Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells. Appl Energy 183:1133–1141. https://doi.org/10.1016/j.apenergy.2016.09.074

    Article  Google Scholar 

  88. Wang L, Chen Y, Long F, Singh L, Trujillo S, Xiao X, Liu H (2020) Breaking the loop: tackling homoacetogenesis by chloroform to halt hydrogen production-consumption loop in single chamber microbial electrolysis cells. Chem Eng J 389:124436. https://doi.org/10.1016/j.cej.2020.124436

    Article  Google Scholar 

  89. Khongkliang P, Jehlee A, Kongjan P, Reungsang A, O-Thong S (2019) High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition. Int J Hydrog Energy 44(60):31841–31852. https://doi.org/10.1016/j.ijhydene.2019.10.022

    Article  Google Scholar 

  90. Wang J, Song X, Wang Y, Bai J, Li M, Dong G, Lin F, Lv Y, Yan D (2017) Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Sci Total Environ 607-608:53–62. https://doi.org/10.1016/j.scitotenv.2017.06.243

    Article  Google Scholar 

  91. Florio C, Nastro RA, Flagiello F et al (2019) Biohydrogen production from solid phase-microbial fuel cell spent substrate: a preliminary study. J Clean Prod 227:506–511. https://doi.org/10.1016/j.jclepro.2019.03.316

    Article  Google Scholar 

  92. Almatouqa A, Babatundeb AO, Khajaha M, Websterc G, Alfodaria M (2020) Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells. J Water Process Eng 34:101140. https://doi.org/10.1016/j.jwpe.2020.101140

    Article  Google Scholar 

  93. Slate AJ, Whitehead KA, Brownson DAC, Banks CE (2019) Microbial fuel cells: an overview of current technology. Renew Sust Energ Rev 101:60–81. https://doi.org/10.1016/j.rser.2018.09.044

    Article  Google Scholar 

  94. Wang F, Gu Y, Patrick O’Brien J et al (2019) Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177(2):361–369. https://doi.org/10.1016/j.cell.2019.03.029

    Article  Google Scholar 

  95. Cardeña R, Žitka J, Koók L, Bakonyi P, Pavlovec L, Otmar M, Nemestothy N, Buitrón G (2020) Feasibility of quaternary ammonium and 1,4-diazabicyclo[2.2.2]octane-functionalized anion-exchange membranes for biohydrogen production in microbial electrolysis cells. Bioelectrochemistry:107479. https://doi.org/10.1016/j.bioelechem.2020.107479

  96. Lee M-Y, Kim K-Y, Yang E, Kim IS (2015) Evaluation of hydrogen production and internal resistance in forward osmosis membrane integrated microbial electrolysis cells. Bioresour Technol 187:106–112. https://doi.org/10.1016/j.biortech.2015.03.079

    Article  Google Scholar 

  97. Jwa E, Yun Y-M, Kim H, Jeong N, Park S-C, Nam J-Y (2018) Domestic wastewater treatment in a tubular microbial electrolysis cell with a membrane electrode assembly. Int J Hydrog Energy 44(2):652–660. https://doi.org/10.1016/j.ijhydene.2018.11.036

    Article  Google Scholar 

  98. Shabani M, Younesi H, Pontié M, Rahimpour A, Rahimnejad M, Zinatizadeh AA (2020) A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. J Clean Prod:121446. https://doi.org/10.1016/j.jclepro.2020.121446

  99. Zhang Y, Liu M, Zhou M, Yang H, Liang L, Gu T (2019) Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges. Renew Sust Energ Rev 103:13–29. https://doi.org/10.1016/j.rser.2018.12.027

    Article  Google Scholar 

  100. Kadier A, Kalil MS, Abdeshahian P et al (2016) Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew Sust Energ Rev 61:501–525. https://doi.org/10.1016/j.rser.2016.04.017

    Article  Google Scholar 

  101. Choi M-J, Yang E, Yu H-W, Kim IS, Oh S-E, Chae K-J (2018) Transition metal/carbon nanoparticle composite catalysts as platinum substitutes for bioelectrochemical hydrogen production using microbial electrolysis cells. Int J Hydrog Energy 44(4):2258–2265. https://doi.org/10.1016/j.ijhydene.2018.07.020

    Article  Google Scholar 

  102. Su M, Wei L, Qiu Z, Wang G, Shen J (2016) Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes. J Power Sources 301:29–34. https://doi.org/10.1016/j.jpowsour.2015.09.108

    Article  Google Scholar 

  103. Sun R, Xing D, Jia J, Liu Q, Zhou A, Bai S, Ren N (2014) Optimization of high-solid waste activated sludge concentration for hydrogen production in microbial electrolysis cells and microbial community diversity analysis. Int J Hydrog Energy 39(35):19912–19920. https://doi.org/10.1016/j.ijhydene.2014.09.163

    Article  Google Scholar 

  104. Dai H, Yang H, Liu X, Jian X, Liang Z (2016) Electrochemical evaluation of nano-Mg(OH) 2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Fuel 174:251–256. https://doi.org/10.1016/j.fuel.2016.02.013

    Article  Google Scholar 

  105. Wang W, Zhang B, He Z (2019) Bioelectrochemical deposition of palladium nanoparticles as catalysts by Shewanella oneidensis MR-1 towards enhanced hydrogen production in microbial electrolysis cells. Electrochim Acta 318:794–800. https://doi.org/10.1016/j.electacta.2019.06.038

    Article  Google Scholar 

  106. Kim K-Y, Logan BE (2019) Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells. Int J Hydrog Energy 44(26):13169–13174. https://doi.org/10.1016/j.ijhydene.2019.04.041

    Article  Google Scholar 

  107. Guo K, Prévoteau A, Rabaey K (2017) A novel tubular microbial electrolysis cell for high rate hydrogen production. J Power Sources 356:484–490. https://doi.org/10.1016/j.jpowsour.2017.03.029

    Article  Google Scholar 

  108. Rozenfeld S, Teller H, Schechter M, Farber R, Krichevski O, Schechter A, Cahan R (2018) Exfoliated molybdenum di-sulfide (MoS 2) electrode for hydrogen production in microbial electrolysis cell. Bioelectrochemistry 123:201–210. https://doi.org/10.1016/j.bioelechem.2018.05.007

    Article  Google Scholar 

  109. Xiao L, Wen Z, Ci S, Chen J, He Z (2012) Carbon/iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells. Nano Energy 1(5):751–756. https://doi.org/10.1016/j.nanoen.2012.06.002

    Article  Google Scholar 

  110. Rago L, Baeza JA, Guisasola A (2016) Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions. Bioelectrochemistry 109:57–62. https://doi.org/10.1016/j.bioelechem.2016.01.003

    Article  Google Scholar 

  111. Wu T, Zhu G, Jha AK, Zou R, Liu L, Huang X, Liu C (2013) Hydrogen production with effluent from an anaerobic baffled reactor (ABR) using a single-chamber microbial electrolysis cell (MEC). Int J Hydrog Energy 38(25):11117–11123. https://doi.org/10.1016/j.ijhydene.2013.03.029

    Article  Google Scholar 

  112. Lu L, Xing D, Ren N, Logan BE (2012) Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour Technol 124:68–76. https://doi.org/10.1016/j.biortech.2012.08.040

    Article  Google Scholar 

  113. Lewis AJ, Ren S, Ye X, Kim P, Labbe N, Borole AP (2015) Hydrogen production from switchgrass via an integrated pyrolysis–microbial electrolysis process. Bioresour Technol 195:231–241. https://doi.org/10.1016/j.biortech.2015.06.085

    Article  Google Scholar 

  114. Nam J-Y, Logan BE (2012) Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells. Int J Hydrog Energy 37(24):18622–18628. https://doi.org/10.1016/j.ijhydene.2012.09.140

    Article  Google Scholar 

  115. Li J, Zou W, Xu Z, Ye D, Zhu X, Liao Q (2013) Improved hydrogen production of the downstream bioreactor by coupling single chamber microbial fuel cells between series-connected photosynthetic biohydrogen reactors. Int J Hydrog Energy 38(35):15613–15619. https://doi.org/10.1016/j.ijhydene.2013.04.010

    Article  Google Scholar 

  116. Yan D, Yang X, Yuan W (2015) Electricity and H2 generation from hemicellulose by sequential fermentation and microbial fuel/electrolysis cell. J Power Sources 289:26–33. https://doi.org/10.1016/j.jpowsour.2015.04.164

    Article  Google Scholar 

  117. Gandu B, Rozenfeld S, Ouaknin Hirsch L, Schechter A, Cahan R (2020) Immobilization of bacterial cells on carbon-cloth anode using alginate for hydrogen generation in a microbial electrolysis cell. J Power Sources 455:227986. https://doi.org/10.1016/j.jpowsour.2020.227986

    Article  Google Scholar 

  118. Popov AL, Michie IS, Kim JR, Dinsdale RM, Guwy AJ, Esteves SR, Premier GC (2016) Enrichment strategy for enhanced bioelectrochemical hydrogen production and the prevention of methanogenesis. Int J Hydrog Energy 41(7):4120–4131. https://doi.org/10.1016/j.ijhydene.2016.01.014

    Article  Google Scholar 

  119. Hu H, Fan Y, Liu H (2010) Optimization of NiMo catalyst for hydrogen production in microbial electrolysis cells. Int J Hydrog Energy 35(8):3227–3233. https://doi.org/10.1016/j.ijhydene.2010.01.131

    Article  Google Scholar 

  120. Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G (2013) Hydrogen storage: beyond conventional methods. Chem Commun 49:8735–8751. https://doi.org/10.1039/C3CC43836H

    Article  Google Scholar 

  121. Zuttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172. https://doi.org/10.1007/s00114-004-0516-x

    Article  Google Scholar 

  122. Cardeña R, Cercado B, Buitrón G (2019) Microbial electrolysis cell for biohydrogen production. In: Pandey A (ed) Biohydrogen, 2nd edn. Elsevier, pp 159–185

  123. Wang K, Sheng Y, Cao H, Yan K, Zhang Y (2017) Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor. Chem Eng J 307:150e158. https://doi.org/10.1016/j.cej.2016.07.106

    Article  Google Scholar 

  124. Zhu G, Wu T, Jha AK, Zou R, Liu L, Huang X, Lu C (2014) Review of bio-hydrogen production and new application in the pollution control via microbial electrolysis cell. Desalin Water Treat 52:5413e5421. https://doi.org/10.1080/19443994.2013.808583

    Article  Google Scholar 

  125. Lim SS, Fontmorin J-M, Izadi P, Wan Daud WR, Scott K, Yu EH (2019) Impact of applied cell voltage on the performance of a microbial electrolysis cell fully catalysed by microorganisms. Int J Hydrog Energy 45:2557–2568. https://doi.org/10.1016/j.ijhydene.2019.11.142

    Article  Google Scholar 

  126. Kadier A, Kalil MS, Logrono W, Mohamed A, Hasan HA (2019) Hydrogen production through electrolysis. In: Lipman T, Weber A (eds) Fuel cells and hydrogen production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York. https://doi.org/10.1007/978-1-4939-7789-5_954

    Chapter  Google Scholar 

  127. Yuan H, Lu Y, Abu-Reesh IM, He Z (2015) Bioelectrochemical production of hydrogen in an innovative pressure-retarded osmosis/microbial electrolysis cell system: experiments and modeling. Biotechnol Biofuels 8:116. https://doi.org/10.1186/s13068-015-0305-0

    Article  Google Scholar 

  128. Nam J-Y, Tokash JC, Logan BE (2011) Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. Int J Hydrog Energy 36(17):10550–10556. https://doi.org/10.1016/j.ijhydene.2011.05.148

    Article  Google Scholar 

  129. Tartakovsky B, Mehta P, Santoyo G, Guiot SR (2011) Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage. Int J Hydrog Energy 36(17):10557–10564. https://doi.org/10.1016/j.ijhydene.2011.05.162

    Article  Google Scholar 

  130. Cho S-K, Lee M-E, Lee W, Ahn Y (2018) Improved hydrogen recovery in microbial electrolysis cells using intermittent energy input. Int J Hydrog Energy 44:2253–2257. https://doi.org/10.1016/j.ijhydene.2018.07.025

    Article  Google Scholar 

  131. Ding A, Fan Q, Cheng R, Sun G, Zhang M, Wu D (2018) Impacts of applied voltage on microbial electrolysis cell-anaerobic membrane bioreactor (MEC-AnMBR) and its membrane fouling mitigation mechanism. Chem Eng J 333:630–635. https://doi.org/10.1016/j.cej.2017.09.190

    Article  Google Scholar 

  132. Venkata Mohan S, Lenin Babu M (2011) Dehydrogenase activity in association with poised potential during biohydrogen production in single chamber microbial electrolysis cell. Bioresour Technol 102(18):8457–8465. https://doi.org/10.1016/j.biortech.2011.02.051

    Article  Google Scholar 

  133. Verea L, Savadogo O, Verde A, Campos J, Ginez F, Sebastian PJ (2014) Performance of a microbial electrolysis cell (MEC) for hydrogen production with a new process for the biofilm formation. Int J Hydrog Energy 39(17):8938–8946. https://doi.org/10.1016/j.ijhydene.2014.03.203

    Article  Google Scholar 

  134. Moodley P, Kana G (2015) Optimization of operational parameters for biohydrogen production from waste sugarcane leaves and semi-pilot scale process assessment. BioRes. 12:2015–2030. https://doi.org/10.15376/biores.12.1.2015-2030

    Article  Google Scholar 

  135. Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS (2010) Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int J Hydrog Energy 35:13379–13386. https://doi.org/10.1016/j.ijhydene.2009.11.114

    Article  Google Scholar 

  136. Catal T, Lesnik KL, Liu H (2015) Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. Bioresour Technol 187:77–83. https://doi.org/10.1016/j.biortech.2015.03.099

    Article  Google Scholar 

  137. Karthikeyan R, Cheng KY, Selvam A, Bose A, Wong JWC (2017) Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells - a review. Biotechnol Adv 35:758–771. https://doi.org/10.1016/j.biotechadv.2017.07.004

    Article  Google Scholar 

  138. Zhang J, Bai Y, Fan Y, Hou H (2016) Improved bio-hydrogen production from glucose by adding a specific methane inhibitor to microbial electrolysis cells with a double anode arrangement. J Biosci Bioeng 122(4):488–493. https://doi.org/10.1016/j.jbiosc.2016.03.016

    Article  Google Scholar 

  139. Ding A, Yang Y, Sun G, Wu D (2016) Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chem Eng J 283:260–265. https://doi.org/10.1016/j.cej.2015.07.054

    Article  Google Scholar 

  140. Sosa-Hernández O, Popat SC, Parameswaran P, Alemán-Nava GS, Torres CI, Buitrón G, Parra-Saldívar R (2016) Application of microbial electrolysis cells to treat spent yeast from an alcoholic fermentation. Bioresour Technol 200:342–349. https://doi.org/10.1016/j.biortech.2015.10.053

    Article  Google Scholar 

  141. Tenca A, Cusick RD, Schieuano A, Oberti R, Logan BE (2013) Evaluation of low cost cathode materials for treatment of industrial and food processing waste-water using microbial electrolysis cells. Int J Hydrog Energy 38(4):1859–1865. https://doi.org/10.1016/j.ijhydene.2012.11.103

    Article  Google Scholar 

  142. Yang Y, Qin M, Yang X, He Z (2017) Enhancing hydrogen production in microbial electrolysis cells by in situ hydrogen oxidation for self-buffering pH through periodic polarity reversal. J Power Sources 347:21–28. https://doi.org/10.1016/j.jpowsour.2017.02.046

    Article  Google Scholar 

  143. Samsudeen N, Spurgeon J, Matheswaran M, Satyavolu J (2019) Simultaneous biohydrogen production with distillery wastewater treatment using modified microbial electrolysis cell. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.06.134

  144. Wang A, Liu W, Ren N, Zhou J, Cheng S (2010) Key factors affecting microbial anode potential in a microbial electrolysis cell for H2 production. Int J Hydrogen Energ 35:13481–13487. https://doi.org/10.1016/j.ijhydene.2009.11.125

    Article  Google Scholar 

  145. Gadkari S, Fontmorin J-M, Yu E, Sadhukhan J (2020) Influence of temperature and other system parameters on microbial fuel cell performance: numerical and experimental investigation. Chem Eng J 388:124176. https://doi.org/10.1016/j.cej.2020.124176

    Article  Google Scholar 

  146. Carmona-Martinrz AA, Trably E, Milferstedt K, Lacroix R, Etcheverry L, Bernet N (2015) Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater. Water Res 81:149–156. https://doi.org/10.1016/j.watres.2015.05.041

    Article  Google Scholar 

  147. Wang Y-Z, Zhang L, Xu T, Ding K (2017) Influence of initial anolyte pH and temperature on hydrogen production through simultaneous saccharification and fermentation of lignocellulose in microbial electrolysis cell. Int J Hydrog Energy 42(36):22663–22670. https://doi.org/10.1016/j.ijhydene.2017.07.214

    Article  Google Scholar 

  148. Kyazze G, Popov A, Dinsdale R, Esteves S, Hawkes F, Premier G, Guwy A (2010) Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. Int J Hydrog Energy 35(15):7716–7722. https://doi.org/10.1016/j.ijhydene.2010.05.036

    Article  Google Scholar 

  149. Yossan S, Xiao L, Prasertsan P, He Z (2013) Hydrogen production in microbial electrolysis cells: choice of catholyte. Int J Hydrog Energy 38(23):9619–9624. https://doi.org/10.1016/j.ijhydene.2013.05.094

    Article  Google Scholar 

  150. Rousseau R, Ketep SF, Etcheverry L, Delia M-L, Bergel A (2020) Microbial electrolysis cell (MEC): a step ahead towards hydrogen-evolving cathode operated at high current density. Bioresour Technol Rep 9:100399. https://doi.org/10.1016/j.biteb.2020.100399

    Article  Google Scholar 

  151. Jafary T, Daud WRW, Ghasemi M, Kim BH, Carmona-Martinez AA, Bakar MHA, Jahim JM, Ismail M (2017) A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell. J Clean Prod 164:1135–1144. https://doi.org/10.1016/j.jclepro.2017.07.033

    Article  Google Scholar 

  152. Cheng S, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102(3):3571–3574. https://doi.org/10.1016/j.biortech.2010.10.025

    Article  Google Scholar 

  153. Lu L, Hou D, Fang Y, Huang Y, Ren ZJ (2016) Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells. Electrochim Acta 206:381–387. https://doi.org/10.1016/j.electacta.2016.04.167

    Article  Google Scholar 

  154. Wang L, Liu W, He Z, Guo Z, Zhou A, Wang A (2017) Cathodic hydrogen recovery and methane conversion using Pt coating 3D nickel foam instead of Pt-carbon cloth in microbial electrolysis cells. Int J Hydrog Energy 42(31):19604–19610. https://doi.org/10.1016/j.ijhydene.2017.06.019

    Article  Google Scholar 

  155. Sangeetha T, Guo Z, Liu W, Gao L, Wang L, Cui M, Chen C, Wang A (2017) Energy recovery evaluation in an up flow microbial electrolysis coupled anaerobic digestion (ME-AD) reactor: role of electrode positions and hydraulic retention times. Appl Energy 206:1214–1224. https://doi.org/10.1016/j.apenergy.2017.10.026

    Article  Google Scholar 

  156. Liu YP, Wang YH, Wang BS, Chen QY (2014) Effect of anolyte pH and cathode Pt loading on electricity and hydrogen co-production performance of the bioelectrochemical system. Int J Hydrog Energy 39(26):14191–14195. https://doi.org/10.1016/j.ijhydene.2014.02.127

    Article  Google Scholar 

  157. Chen Y, Xu Y, Chen L, Li P, Zhu S, Shen S (2015) Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes. Energy 88:377–384. https://doi.org/10.1016/j.energy.2015.05.057

    Article  Google Scholar 

  158. Escapa A, Lobato A, Garcia DM, Moran A (2013) Hydrogen production and COD elimination rate in a continuous microbial electrolysis cell: the influence of hydraulic retention time and applied voltage. Environ Prog Sustain Energy 32:263–268. https://doi.org/10.1002/ep.11619

    Article  Google Scholar 

  159. Shen R, Jiang Y, Ge Z, Lu J, Zhang Y, Liu Z, Ren ZJ (2018) Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation. Appl Energy 212:509–515. https://doi.org/10.1016/j.apenergy.2017.12.065

    Article  Google Scholar 

  160. Leicester DD, Amezaga JM, Moore A, Heidrich ES (2020) Optimising the hydraulic retention time in a pilot-scale microbial electrolysis cell to achieve high volumetric treatment rates using concentrated domestic wastewater. Molecules 25:2945–2965. https://doi.org/10.3390/molecules25122945

    Article  Google Scholar 

  161. Gil-Carrera L, Escapa A, Carracedo B, Moran A, Gomez X (2013a) Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages. Bioresour Technol 146:63–69. https://doi.org/10.1016/j.biortech.2013.07.020

    Article  Google Scholar 

  162. Ki D, Parameswaran P, Popat SC, Rittmann BE, Torres CI (2017) Maximizing coulombic recovery and solids reduction from primary sludge by controlling retention time and pH in a flat-plate microbial electrolysis cell. Environ Sci Water Res 3:333–339. https://doi.org/10.1039/C6EW00305B

    Article  Google Scholar 

  163. Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406. https://doi.org/10.1021/es8001822

    Article  Google Scholar 

  164. Khan MZ, Singh S, Sreekrishnan TR, Ahammad SZ (2014) Feasibility study on anaerobic biodegradation of azo dye reactive orange 16. RSC Adv 4:46851–46859. https://doi.org/10.1039/C4RA06716A

    Article  Google Scholar 

  165. Chen Y, Shen J, Huang L, Pan Y, Quan X (2016) Enhanced Cd(II) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO 3. Int J Hydrog Energy 41(31):13368–13379. https://doi.org/10.1016/j.ijhydene.2016.06.200

    Article  Google Scholar 

  166. Hou Y, Zhang R, Yu Z, Huang L, Liu Y, Zhou Z (2017) Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell. Bioresour Technol 224:63–68. https://doi.org/10.1016/j.biortech.2016.10.069

    Article  Google Scholar 

  167. Zhou A, Liu Z, Wang S, Chen E, Wei Y, Liu W, Wang A, Yue X (2019) Bio-electrolysis contribute to simultaneous bio-hydrogen recovery and phosphorus release from waste activated sludge assisted with prefermentation. Energy 185:787–794. https://doi.org/10.1016/j.energy.2019.07.097

    Article  Google Scholar 

  168. Almatouq A, Babatunde AO (2017) Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell. Bioresour Technol 237:193–203. https://doi.org/10.1016/j.biortech.2017.02.043

    Article  Google Scholar 

  169. Wang Q, Huang L, Yu H, Quan X, Li Y, Fan G, Li L (2015) Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. Int J Hydrog Energy 40(1):184–196. https://doi.org/10.1016/j.ijhydene.2014.11.014

    Article  Google Scholar 

  170. Huang L, Li M, Pan Y, Shi Y, Quan X, Li Puma G (2017) Efficient W and Mo deposition and separation with simultaneous hydrogen production in stacked bioelectrochemical systems. Chem Eng J 327:584–596. https://doi.org/10.1016/j.cej.2017.06.149

    Article  Google Scholar 

  171. Dong ZS, Zhao Y, Fan L, Wang Y-X, Wang J-W, Zhang K (2017) Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell. Int J Electrochem Sci 12:10553–10566. https://doi.org/10.20964/2017.11.53

    Article  Google Scholar 

  172. Wu X, Modin O (2013) Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor. Bioresour Technol 146:530–536. https://doi.org/10.1016/j.biortech.2013.07.130

    Article  Google Scholar 

  173. Wang Q, Huang L, Pan Y, Zhou P, Quan X, Logan BE, Chen H (2016) Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems. Bioresour Technol 200:565–571. https://doi.org/10.1016/j.biortech.2015.10.084

    Article  Google Scholar 

  174. Luo H, Liu G, Zhang R, Bai Y, Fu S, Hou Y (2014) Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. J Hazard Mater 270:153–159. https://doi.org/10.1016/j.jhazmat.2014.01.050

    Article  Google Scholar 

  175. Mitov M, Chorbadzhiyska E, Nalbandian L, Hubenova Y (2017) Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis. J Power Sources 356:467–472. https://doi.org/10.1016/j.jpowsour.2017.02.066

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Senthil Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, A., Karishma, S., Kumar, P.S. et al. Microbial electrolysis cells and microbial fuel cells for biohydrogen production: current advances and emerging challenges. Biomass Conv. Bioref. 13, 8403–8423 (2023). https://doi.org/10.1007/s13399-020-00973-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00973-x

Keywords

Navigation