Skip to main content
Log in

Assessment of hydro-mechanical properties of biochar-amended soil sourced from two contrasting feedstock

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In geo-environmental applications, the potential of biochar has been explored as a suitable cover material of landfill and vegetated slopes. The inherent nature of biochar affects the geo-environmental properties of the soil-biochar composite like water retention, compressive strength, infiltration, and soil erosion. Performance of a cover depends on biochar’s surface functional groups, which can be either hydrophobic or hydrophilic based on bio-source. The objective of this paper is to investigate the geotechnical properties of biochar-amended soil sourced from two contrasting feedstock, i.e., poultry litter (animal based) and water hyacinth (plant based). The test results show that biochar addition increased the Atterberg limits and reduced the acidity of soil. Biochar addition directly increased the optimum moisture content and decreased the maximum dry density. Both biochar addition decreased the composite compressive strength by 25–50% but increased the ductility of composite. Water hyacinth biochar (WHB) inclusion decreased the erosion rate of soil while it is not the same for poultry litter biochar (PLB). In the case of water retention, only the addition of WHB increases retention and holding capacity of soil. The obtained results have been discussed in context with the conducted microstructural, chemical, and physical tests on both biochar. Through these analyses on biochar of different origin and having contrasting functional groups and intra-pore network, the development of a complex biochar-water network was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Joseph S, Peacocke C, Lehmann J, Munroe P (2009) Developing a biochar classification and test methods. Biochar Environ Manag Sci Technol 1:107–126

    Google Scholar 

  2. Chen XW, Wong JTF, Chen ZT, Tang TWL, Guo HW, Leung AOW, Ng CWW, Wong MH (2018) Effects of biochar on the ecological performance of a subtropical landfill. Sci Total Environ 644:963–975

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Wang Y, Wang H-S, Tang C-S, Gu K, Shi B (2019) Remediation of heavy-metal-contaminated soils by biochar: a review. Environ Geotech 1–14

  4. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91(1):1–33

    Article  CAS  Google Scholar 

  5. Rodríguez-Vila A, Selwyn-Smith H, Enunwa L, Smail I, Covelo EF, Sizmur T (2018) Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature. Environ Sci Pollut Res 25(8):7730–7739

    Article  Google Scholar 

  6. Troeh FR, Thompson LM (2005) Soils and soil fertility, vol 489. Blackwell New York, New York

    Google Scholar 

  7. Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Earthscan, London

    Book  Google Scholar 

  8. Beall FC, Eickner HW (1970) Thermal degradation of wood components: a review of the literature, vol 130. US Forest Products Laboratory, Madison

    Google Scholar 

  9. Barreto PLM, Pires ATN, Soldi V (2003) Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polym Degrad Stab 79(1):147–152

    Article  CAS  Google Scholar 

  10. Bordoloi S, Garg A, Sekharan S (2017) A review of physio-biochemical properties of natural fibers and their application in soil reinforcement. Adv Civ Eng Mater 6(1):323–359

    Article  CAS  Google Scholar 

  11. Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  12. Reddy KR, Yaghoubi P, Yukselen-Aksoy Y (2015) Effects of biochar amendment on geotechnical properties of landfill cover soil. Waste Manag Res 33(6):524–532

    Article  CAS  PubMed  Google Scholar 

  13. Sadasivam BY, Reddy KR (2015) Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars. J Environ Manag 158:11–23

    Article  CAS  Google Scholar 

  14. Sadasivam BY, Reddy KR (2015) Adsorption and transport of methane in biochars derived from waste wood. Waste Manag 43:218–229

    Article  CAS  PubMed  Google Scholar 

  15. Feng S, Leung AK, Liu HW, Ng CWW, Zhan LT, Chen R (2019) Effects of thermal boundary condition on methane oxidation in landfill cover soil at different ambient temperatures. Sci Total Environ 692:490–502

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Zhan L, Wu T, Feng S, Lan J, Chen Y (2020) A simple and rapid in situ method for measuring landfill gas emissions and methane oxidation rates in landfill covers. Waste Manag Res 38(5):588–593

    Article  CAS  PubMed  Google Scholar 

  17. Ni JJ, Chen XW, Ng CWW, Guo HW (2018) Effects of biochar on water retention and matric suction of vegetated soil. Geotech Lett 8(2):124–129. https://doi.org/10.1680/jgele.17.00180

    Article  Google Scholar 

  18. Ng CWW, Ni JJ, Leung AK (2019) Effects of plant growth and spacing on soil hydrological changes: a field study. Géotechnique:1–15

  19. Wong, T.F., Wong, M.H., Ng, C.W.W., Chan, C.S., Shin, Y., Tsui, C.Y., Kim, J.J., Choy, K., Reis, R., Liu, N. (2016) A field investigation on the effects of biochar on soil aggregation in landfill final cover. paper presentation, Third International Conference on Contaminated Land, Ecological Assessment and Remediation,(CLEAR 2016), Taipei, Taiwan

  20. Wong JTF, Chen Z, Ng CWW, Wong MH (2016) Gas permeability of biochar-amended clay: potential alternative landfill final cover material. Environ Sci Pollut Res 23(8):7126–7131

    Article  CAS  Google Scholar 

  21. Yargicoglu EN, Reddy KR (2018) Biochar-amended soil cover for microbial methane oxidation: effect of biochar amendment ratio and cover profile. J Geotech Geoenviron Eng 144(3):4017123

    Article  Google Scholar 

  22. Yargicoglu EN, Reddy KR (2017) Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: a laboratory column study. J Environ Manag 193:19–31

    Article  CAS  Google Scholar 

  23. Yargicoglu EN, Reddy KR (2017) Microbial abundance and activity in biochar-amended landfill cover soils: evidence from large-scale column and field experiments. J Environ Eng 143(9):4017058. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001254

    Article  CAS  Google Scholar 

  24. Sadasivam, B.Y., Reddy, K.R. (2015) Shear strength of waste–wood biochar and biochar–amended soil used for sustainable landfill cover systems. From Fundam. to Appl. Geotech., 745–52

  25. Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268

    Article  CAS  PubMed  Google Scholar 

  26. Wong JTF, Chen Z, Chen X, Ng CWW, Wong MH (2017) Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material. J Soils Sediments 17(3):590–598

    Article  Google Scholar 

  27. Chen X-W, Wong JT-F, Ng CW-W, Wong M-H (2016) Feasibility of biochar application on a landfill final cover—a review on balancing ecology and shallow slope stability. Environ Sci Pollut Res 23(8):7111–7125

    Article  CAS  Google Scholar 

  28. Xie L, Liang X, Su T-C (2018) Measurement of pressure in viewable hole erosion test. Can Geotech J 55(10):1502–1509

    Article  Google Scholar 

  29. Kumar H, Ganesan SP, Bordoloi S, Sreedeep S, Lin P, Mei G, Garg A, Sarmah AK (2019) Erodibility assessment of compacted biochar amended soil for geo-environmental applications. Sci Total Environ 672:698–707. https://doi.org/10.1016/j.scitotenv.2019.03.417

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Jyoti Bora, M., Bordoloi, S., Kumar, H., Gogoi, N., Zhu, H.-H., Sarmah, A.K., Sreeja, P., Sreedeep, S., Mei, G. (2020) Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils Int J Damage Mech, 1056789520925524

  31. Pardo GS, Sarmah AK, Orense RP (2018) Mechanism of improvement of biochar on shear strength and liquefaction resistance of sand. Géotechnique 69(6):471–480

    Article  Google Scholar 

  32. Ng CWW, Leung AK, Woon KX (2014) Effects of soil density on grass-induced suction distributions in compacted soil subjected to rainfall. Can Geotech J 51(3):311–321

    Article  Google Scholar 

  33. ASTM D2166-06. (2006) Standard test method for unconfined compressive strength of cohesive soil Annu B ASTM Stand 2166

  34. ASTM D4647-13. (2013) Standard test methods for identification and classification of dispersive clay soils by the pinhole test. Annu. B. ASTM Stand., Doi: https://doi.org/10.1520/D4647_D4647M-13

  35. Leung AK, Garg A, Ng CWW (2015) Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng Geol 193:183–197

    Article  Google Scholar 

  36. Gopal P, Bordoloi S, Ratnam R, Lin P, Cai W, Buragohain P, Garg A, Sreedeep S (2019) Investigation of infiltration rate for soil-biochar composites of water hyacinth. Acta Geophys 67(1):231–246

    Article  ADS  Google Scholar 

  37. Vakili AH, Kaedi M, Mokhberi M, bin Selamat MR, Salimi M (2018) Treatment of highly dispersive clay by lignosulfonate addition and electroosmosis application. Appl Clay Sci 152:1–8

    Article  CAS  Google Scholar 

  38. Sherard JL, Steele EF, Decker RS, Dunnigan LP (1976) Pinhole test for identifying dispersive soils. J Geotech Eng Div 102(1):69–85

    Article  Google Scholar 

  39. Kumar H, Bordoloi S, Yamsani SK, Garg A, Sekharan S, Rakesh RR (2019) Erosion potential of compacted surface soils for multilayered cover system. Adv Civ Eng Mater 8(1). https://doi.org/10.1520/acem20180088

  40. Tian Z, Gao W, Kool D, Ren T, Horton R, Heitman JL (2018) Approaches for estimating soil water retention curves at various bulk densities with the extended van Genuchten model. Water Resour Res 54(8):5584–5601

    Article  ADS  Google Scholar 

  41. Bordoloi S, Hussain R, Garg A, Sreedeep S, Zhou W-H (2017) Infiltration characteristics of natural fiber reinforced soil. Transp Geotech 12:37–44

    Article  Google Scholar 

  42. Devices, D. (2013) Mini disk infiltrometer user’s manual version 10

  43. Astm D (2011) 2487, standard classification of soils for engineering purposes (unified soil classification system). Annu B ASTM Stand 4:206–215

    Google Scholar 

  44. ASTM D4318-10. (2010) Standard test method for liquid limit. Annu. B. ASTM Stand

  45. ASTM D422-63. (2007) Standard test method for particle size analysis of soils. Annu. B. ASTM Stand

  46. Standard test methods for specific gravity of soil solids by water pycnometer (2014). ASTM International, West Conshohocken, PA

  47. ASTM D698-12. (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort. Annu. B. ASTM Stand

  48. Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46(15):7939–7954

    Article  PubMed  ADS  Google Scholar 

  49. Stuart BH, Craft L, Forbes SL, Dent BB (2005) Studies of adipocere using attenuated total reflectance infrared spectroscopy. Forensic Sci Med Pathol 1(3):197–201

    Article  CAS  PubMed  Google Scholar 

  50. Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, Zygourakis K, Barnes RT (2012) Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 41:34–43

    Article  CAS  Google Scholar 

  51. Gray M, Johnson MG, Dragila MI, Kleber M (2014) Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenergy 61:196–205. https://doi.org/10.1016/j.biombioe.2013.12.010

    Article  CAS  Google Scholar 

  52. ASTM D1762-84. (2013) Standard test method for chemical analysis of wood charcoal,. Annu. B. ASTM Stand., Doi: https://doi.org/10.1520/D1762-84R13

  53. Munera-Echeverri JL, Martinsen V, Strand LT, Zivanovic V, Cornelissen G, Mulder J (2018) Cation exchange capacity of biochar: an urgent method modification. Sci Total Environ 642:190–197

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Das O, Sarmah AK, Bhattacharyya D (2015) Structure–mechanics property relationship of waste derived biochars. Sci Total Environ 538:611–620

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Cabanettes F, Joubert A, Chardon G, Dumas V, Rech J, Grosjean C, Dimkovski Z (2018) Topography of as built surfaces generated in metal additive manufacturing: a multi scale analysis from form to roughness. Precis Eng 52:249–265

    Article  Google Scholar 

  56. Normalización, O.I. de. (2004) ISO 13322-1: 2004 (E), particle size analysis, image analysis methods. Static Image Analysis Methods. ISO

  57. ISO 9278-6. (2008) Representation of results of particle size analysis–part 6: descriptive and quantitative representation of particle shape and morphology. ISO

  58. Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. Biochar Environ Manag Sci Technol 1

  59. Zong Y, Chen D, Lu S (2014) Impact of biochars on swell–shrinkage behavior, mechanical strength, and surface cracking of clayey soil. J Plant Nutr Soil Sci 177(6):920–926. https://doi.org/10.1002/jpln.201300596

    Article  CAS  Google Scholar 

  60. Zebarth BJ, Neilsen GH, Hogue E, Neilsen D (1999) Influence of organic waste amendments on selected soil physical and chemical properties. Can J Soil Sci 79(3):501–504

    Article  Google Scholar 

  61. Fidel RB, Laird DA, Thompson ML, Lawrinenko M (2017) Characterization and quantification of biochar alkalinity. Chemosphere 167:367–373

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 140(9):4014047

    Article  Google Scholar 

  63. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48(7):516–525

    Article  CAS  Google Scholar 

  65. Zhang TW, Cui YJ, Lamas-Lopez F, Calon N, Costa D’Aguiar S (2018) Compacted soil behaviour through changes of density, suction, and stiffness of soils with remoulding water content. Can Geotech J 55(2):182–190

    Article  Google Scholar 

  66. Guo Y, Tang H, Li G, Xie D (2014) Effects of cow dung biochar amendment on adsorption and leaching of nutrient from an acid yellow soil irrigated with biogas slurry. Water Air Soil Pollut 225(1):1820

    Article  ADS  Google Scholar 

  67. Markgraf W, Horn R, Peth S (2006) An approach to rheometry in soil mechanics—structural changes in bentonite, clayey and silty soils. Soil Tillage Res 91(1–2):1–14

    Article  Google Scholar 

  68. Sun F, Lu S (2014) Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J Plant Nutr Soil Sci 177(1):26–33

    Article  Google Scholar 

  69. Bordoloi S, Gopal P, Boddu R, Wang Q, Cheng Y-F, Garg A, Sreedeep S (2019) Soil-biochar-water interactions: role of biochar from Eichhornia crassipes in influencing crack propagation and suction in unsaturated soils. J Clean Prod 210:847–859. https://doi.org/10.1016/j.jclepro.2018.11.051

    Article  CAS  Google Scholar 

  70. Ajayi AE, Holthusen D, Horn R (2016) Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Tillage Res 155:166–175. https://doi.org/10.1016/j.still.2015.08.007

    Article  Google Scholar 

  71. Jeffery S, Meinders MBJ, Stoof CR, Bezemer TM, van de Voorde TFJ, Mommer L, van Groenigen JW (2015) Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 251:47–54

    Article  ADS  Google Scholar 

  72. Garg A, Huang H, Kushvaha V, Madhushri P, Kamchoom V, Wani I, Koshy N, Zhu HH (2020) Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophysica 68(1):207–217

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant No. 41722209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hu Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordoloi, S., Kumar, H., Hussain, R. et al. Assessment of hydro-mechanical properties of biochar-amended soil sourced from two contrasting feedstock. Biomass Conv. Bioref. 14, 5803–5818 (2024). https://doi.org/10.1007/s13399-020-00946-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00946-0

Keywords

Navigation