Skip to main content

Advertisement

Log in

Low-cost production of PHA using cashew apple (Anacardium occidentale L.) juice as potential substrate: optimization and characterization

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates are polyesters of R-hydroxyalkonic acids, prominently used as bioplastics on grounds of their complete biodegradable and environment-friendly characteristics. There is an upsurge in need of an alternative low-cost, renewable carbon source for the production of PHA for enhanced economic and to exert a positive impact on the industries. In the present work, cashew apple juice (CAJ) was supplemented as a carbon source for Cupriavidus necator to produce PHA. (NH4)2SO4, NH4Cl, NH4NO3 and CO(NH2)2, and NaNO3 were tested and urea was found to be the best nitrogen source that supports optimal growth of the microorganism. The production process was then optimized using response surface methodology by incorporating the effects of total reducing sugar concentration, urea concentration, and inoculum size. Under optimized condition, the resulting PHA yield was found to be 15.78 g/L with total reducing sugar concentration of 50 g/L, inoculum size of 50 mL/L, and urea concentration of 3 g/L. FT-IR, NMR, TGA, and DSC analysis revealed the product to be a copolymer of hydroxybutyrate and hydroxyvalerate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ntaikou I, Koumelis I, Tsitsilianis C, Parthenios J, Lyberatos G (2018) Comparison of yields and properties of microbial polyhydroxyalkanoates generated from waste glycerol-based substrates. Int J Biol Macromol 112:273–283. https://doi.org/10.1016/j.ijbiomac.2018.01.175

    Google Scholar 

  2. Ahn J, Jho EH, Nam K (2016) Effect of acid-digested rice straw waste feeding methods on the 3HV fraction of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production. Process Biochem 51:2119–2126. https://doi.org/10.1016/j.procbio.2016.09.014

    Google Scholar 

  3. Reddy CS, Ghai R, Rashmi KV (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. https://doi.org/10.1016/S0960-8524(02)00212-2

    Google Scholar 

  4. Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater 8:e265–e220. https://doi.org/10.1038/am.2016.48

    Google Scholar 

  5. Muhammadi S, Afzal M, Hameed S (2015) Bacterial polyhydroxyalkanoates-eco-friendly next-generation plastic: production, biocompatibility, biodegradation, physical properties, and applications. Green Chem Lett Rev 8:56–77. https://doi.org/10.1080/17518253.2015.1109715

    Google Scholar 

  6. Ali I, Jamil N (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol (Beijing) 11:19–27. https://doi.org/10.1007/s11515-016-1389-z

    Google Scholar 

  7. Shrivastav A, Kim H-Y, Kim Y-R (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int 2013:1–12. https://doi.org/10.1155/2013/581684

    Google Scholar 

  8. Lee SY, Choi J (1998) Effect of fermentation performance on the economics of poly(3-hydroxybutyrate) production by Alcaligenes latus. Polym Degrad Stab 59:387–393. https://doi.org/10.1016/S0141-3910(97)00176-6

    Google Scholar 

  9. Ojha N, Das N (2018) A statistical approach to optimize the production of polyhydroxyalkanoates from Wickerhamomyces anomalus VIT-NN01 using response surface methodology. Int J Biol Macromol 107:2157–2170. https://doi.org/10.1016/j.ijbiomac.2017.10.089

    Google Scholar 

  10. Cui YW, Zhang HY, Ji SY, Wang ZW (2017) Kinetic analysis of the temperature effect on polyhydroxyalkanoate production by Haloferax mediterranei in synthetic molasses wastewater. J Polym Environ 25:277–285. https://doi.org/10.1007/s10924-016-0807-2

    Google Scholar 

  11. Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, Mravec F, Nebesarova J, Kalina M, Marova I, Krzyzanek V, Obruca S (2018) Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour Technol 256:552–556. https://doi.org/10.1016/j.biortech.2018.02.062

    Google Scholar 

  12. Haas C, El-Najjar T, Virgolini N et al (2017) High cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 37:117–122. https://doi.org/10.1016/j.nbt.2016.06.1461

    Google Scholar 

  13. Aramvash A, Hajizadeh-Turchi S, Moazzeni-zavareh F, Gholami-Banadkuki N, Malek-sabet N, Akbari-Shahabi Z (2016) Effective enhancement of hydroxyvalerate content of PHBV in Cupriavidus necator and its characterization. Int J Biol Macromol 87:397–404. https://doi.org/10.1016/j.ijbiomac.2016.03.002

    Google Scholar 

  14. Yamada M, Yukita A, Hanazumi Y, Yamahata Y, Moriya H, Miyazaki M, Yamashita T, Shimoi H (2018) Poly(3-hydroxybutyrate) production using mannitol as a sole carbon source by Burkholderia sp. AIU M5M02 isolated from a marine environment. Fish Sci 84:405–412. https://doi.org/10.1007/s12562-017-1164-3

    Google Scholar 

  15. Bhatia SK, Shim YH, Jeon JM, Brigham CJ, Kim YH, Kim HJ, Seo HM, Lee JH, Kim JH, Yi DH, Lee YK, Yang YH (2015) Starch-based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess Biosyst Eng:38. https://doi.org/10.1007/s00449-015-1390-y

  16. Arikawa H, Matsumoto K, Fujiki T (2017) Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring CSC genes from Escherichia coli W. Appl Microbiol Biotechnol 101:7497–7507. https://doi.org/10.1007/s00253-017-8470-7

    Google Scholar 

  17. Kim BS (2000) Production of poly(3-hydroxybutyrate) from inexpensive substrates. Enzym Microb Technol 27:774–777. https://doi.org/10.1016/S0141-0229(00)00299-4

    Google Scholar 

  18. Kynadi AS, Suchithra TV (2017) Formulation and optimization of a novel media comprising rubber seed oil for PHA production. Ind Crop Prod 105:156–163. https://doi.org/10.1016/j.indcrop.2017.04.062

    Google Scholar 

  19. Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515. https://doi.org/10.1016/j.procbio.2009.01.008

    Google Scholar 

  20. Purama RK, Al-Sabahi JN, Sudesh K (2018) Evaluation of date seed oil and date molasses as novel carbon sources for the production of poly(3Hydroxybutyrate-co-3Hydroxyhexanoate) by Cupriavidus necator H16 Re 2058/pCB113. Ind Crop Prod 119:83–92. https://doi.org/10.1016/j.indcrop.2018.04.013

    Google Scholar 

  21. Pais J, Serafim LS, Freitas F, Reis MAM (2016) Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnol 33:224–230. https://doi.org/10.1016/j.nbt.2015.06.001

    Google Scholar 

  22. Salgaonkar BB, Bragança JM (2017) Utilization of sugarcane bagasse by Halogeometricum borinquense strain E3 for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioengineering 4:50. https://doi.org/10.3390/bioengineering4020050

    Google Scholar 

  23. Balakrishna Pillai A, Jaya Kumar A, Thulasi K, Kumarapillai H (2017) Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai. Braz J Microbiol 48:451–460. https://doi.org/10.1016/j.bjm.2017.01.005

    Google Scholar 

  24. Norhafini H, Huong KH, Amirul AA (2019) High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020. Int J Biol Macromol 125:1024–1032. https://doi.org/10.1016/j.ijbiomac.2018.12.121

    Google Scholar 

  25. Ghosh S, Gnaim R, Greiserman S et al (2019) Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresour Technol 271:166–173. https://doi.org/10.1016/j.biortech.2018.09.108

    Google Scholar 

  26. Zihayat B, Shakibaie M, Sabouri-Shahrbabak S et al (2019) Medium optimization for polyhydroxyalkanoate production by Pseudomonas pseudoalcaligenes strain Te using D-optimal design. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2019.01.039

  27. Wijeyekoon S, Carere CR, West M et al (2018) Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors. Water Res 140:1–11. https://doi.org/10.1016/j.watres.2018.04.017

    Google Scholar 

  28. Liao Q, Guo L, Ran Y et al (2018) Optimization of polyhydroxyalkanoates (PHA) synthesis with heat pretreated waste sludge. Waste Manag 82:15–25. https://doi.org/10.1016/j.wasman.2018.10.019

    Google Scholar 

  29. Maheshwari N, Kumar M, Thakur IS, Srivastava S (2018) Production, process optimization and molecular characterization of polyhydroxyalkanoate (PHA) by CO2sequestering B. cereus SS105. Bioresour Technol 254:75–82. https://doi.org/10.1016/j.biortech.2018.01.002

    Google Scholar 

  30. De Grazia G, Quadri L, Majone M et al (2017) Influence of temperature on mixed microbial culture polyhydroxyalkanoate production while treating a starch industry wastewater. J Environ Chem Eng 5:5067–5075. https://doi.org/10.1016/j.jece.2017.09.041

    Google Scholar 

  31. Sawant SS, Tran TK, Salunke BK, Kim BS (2017) Potential of Saccharophagus degradans for production of polyhydroxyalkanoates using cellulose. Process Biochem 57:50–56. https://doi.org/10.1016/j.procbio.2017.03.016

    Google Scholar 

  32. Odeniyi OA, Adeola OJ (2017) International Journal of Biological Macromolecules Production and characterization of polyhydroxyalkanoic acid from Bacillus thuringiensis using different carbon substrates. Int J Biol Macromol 104:407–413. https://doi.org/10.1016/j.ijbiomac.2017.06.041

    Google Scholar 

  33. Blanky M, Sharaby Y, Rodríguez-martínez S, et al. (2017) Application of cider by-products for medium chain lenght polyhydroxyalkanoate production by Pseudomonas putida KT2440. doi: https://doi.org/10.1016/j.watres.2017.08.068

  34. Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38. https://doi.org/10.1016/j.nbt.2016.05.001

    Google Scholar 

  35. Das I, Arora A (2017) Post-harvest processing technology for cashew apple – a review. J Food Eng 194:87–98. https://doi.org/10.1016/j.jfoodeng.2016.09.011

    Google Scholar 

  36. Arumugam A, Ponnusami V (2015) Ethanol production from cashew apple juice using immobilized saccharomyces cerevisiae cells on silica gel matrix synthesized from sugarcane leaf ash. Chem Eng Commun 202:709–717. https://doi.org/10.1080/00986445.2013.867256

    Google Scholar 

  37. Betiku E, Emeko HA, Solomon BO (2016) Fermentation parameter optimization of microbial oxalic acid production from cashew apple juice. Heliyon 2:e00082. https://doi.org/10.1016/j.heliyon.2016.e00082

    Google Scholar 

  38. López-Abelairas M, García-Torreiro M, Lú-Chau T, Lema JM, Steinbüchel A (2015) Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures. Biochem Eng J 93:250–259. https://doi.org/10.1016/j.bej.2014.10.018

    Google Scholar 

  39. Dias JML, Serafim LS, Lemos PC, Reis MAM, Oliveira R (2005) Mathematical modeling of a mixed culture cultivation process for the production of polyhydroxybutyrate. Biotechnol Bioeng 92:209–222. https://doi.org/10.1002/bit.20598

    Google Scholar 

  40. Owolabi RU, Usman MA, Kehinde AJ (2018) Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. J King Saud Univ Sci 30:22–30. https://doi.org/10.1016/j.jksues.2015.12.005

    Google Scholar 

  41. Impallomeni G, Ballistreri A, Carnemolla GM, Rizzo MG, Nicolò MS, Guglielmino SPP (2018) Biosynthesis and structural characterization of polyhydroxyalkanoates produced by Pseudomonas aeruginosa ATCC 27853 from long odd-chain fatty acids. Int J Biol Macromol 108:608–614. https://doi.org/10.1016/j.ijbiomac.2017.12.037

    Google Scholar 

  42. Guo W, Duan J, Geng W, Feng J, Wang S, Song C (2013) Comparison of medium-chain-length polyhydroxyalkanoates synthases from Pseudomonas mendocina NK-01 with the same substrate specificity. Microbiol Res 168:231–237. https://doi.org/10.1016/j.micres.2012.11.003

    Google Scholar 

  43. Ng K-S, Ooi W-Y, Goh L-K, Rajaiah Shenbagarathai KS (2010) Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16. Polym Degrad Stab 95:1365–1369. https://doi.org/10.1016/j.polymdegradstab.2010.01.021

    Google Scholar 

  44. Nygaard D, Yashchuk O, Hermida ÉB (2019) Evaluation of culture medium on poly(3-hydroxybutyrate) production by Cupriavidus necator ATCC 17697: application of the response surface methodology. Heliyon 5:e01374. https://doi.org/10.1016/j.heliyon.2019.e01374

    Google Scholar 

  45. Murugan P, Gan C-Y, Sudesh K (2017) Biosynthesis of P(3HB-co-3HHx) with improved molecular weights from a mixture of palm olein and fructose by Cupriavidus necator Re2058/pCB113. Int J Biol Macromol 102:1112–1119. https://doi.org/10.1016/j.ijbiomac.2017.05.006

    Google Scholar 

  46. Chandani Devi N, Mazumder PB, Bhattacharjee A (2018) Statistical optimization of polyhydroxybutyrate production by Bacillus Pumilus H9 using cow dung as a cheap carbon source by response surface methodology. J Polym Environ 26:1–9. https://doi.org/10.1007/s10924-018-1194-7

    Google Scholar 

  47. Arumugam A, Senthamizhan SG, Ponnusami V, Sudalai S (2018) Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator. Int J Biol Macromol 112:598–607. https://doi.org/10.1016/j.ijbiomac.2018.02.012

    Google Scholar 

  48. Mostafa NA, Farag AA, Abo-dief HM, Tayeb AM (2018) Production of biodegradable plastic from agricultural wastes. Arab J Chem 11:546–553. https://doi.org/10.1016/j.arabjc.2015.04.008

    Google Scholar 

  49. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1:11. https://doi.org/10.1186/2191-0855-1-11

Download references

Funding

This study is financially supported by SERB (Science & Engineering Research Board), India (Grant No. ECR/2017/ 001038/2017-2018) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arumugam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, A., Anudakshaini, T.S., Shruthi, R. et al. Low-cost production of PHA using cashew apple (Anacardium occidentale L.) juice as potential substrate: optimization and characterization. Biomass Conv. Bioref. 10, 1167–1178 (2020). https://doi.org/10.1007/s13399-019-00502-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00502-5

Keywords

Navigation