Skip to main content
Log in

Linear complexity of generalized sequences by comparison of PN-sequences

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blackburn, S.R.: The linear complexity of the self-shrinking generator. IEEE Trans. Inf. Theory 45(6), 2073–2077 (1999). https://doi.org/10.1109/18.782139

    Article  MathSciNet  MATH  Google Scholar 

  2. Cardell, S.D., Fúster-Sabater, A.: Binomial representation of cryptographic binary sequences and its relation to cellular automata. Complexity 2019, 1–13 (2019). https://doi.org/10.1155/2019/2108014

    Article  MATH  Google Scholar 

  3. Cardell, S.D., Fúster-Sabater, A.: Discrete linear models for the generalized self-shrunken sequences. Finite Fields Appl. 47, 222–241 (2017). https://doi.org/10.1016/j.ffa.2017.06.010

    Article  MathSciNet  MATH  Google Scholar 

  4. Cardell, S.D., Fúster-Sabater, A.: Linear models for high-complexity sequences. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications. Lecture Notes in Computer Science, vol. 10404, pp. 314–324. Springer, New York (2017)

    Google Scholar 

  5. Cardell, S.D., Fúster-Sabater, A.: The \(t\)-modified self-shrinking generator. In: Y. Shi, H. Fu, Y. Tian, V.V. Krzhizhanovskaya, M.H. Lees, J. Dongarra, P.M.A. Sloot (eds.) Computational Science—ICCS 2018. Lecture Notes in Computer Science, vol. 10860, pp. 653–663. Springer, New York (2018)

  6. Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: D. Stinson (ed.) Advances in Cryptology—CRYPTO ’93. Lecture Notes in Computer Science, vol. 773, pp. 22–39. Springer, New York (1994). https://doi.org/10.1007/3-540-48329-2_3

  7. Duvall, P.F., Mortick, J.C.: Decimation of periodic sequences. SIAM J. Appl. Math. 21(3), 367–372 (1971). https://doi.org/10.1137/0121039

    Article  MathSciNet  MATH  Google Scholar 

  8. Fúster-Sabater, A., Caballero-Gil, P.: Synthesis of cryptographic interleaved sequences by means of linear cellular automata. Appl. Math. Lett. 22, 1518–1524 (2009)

    Article  MathSciNet  Google Scholar 

  9. Fúster-Sabater, A., Cardell, S.D.: Computing the linear complexity in a class of cryptographic sequences. In: O. Gervasi, B. Murgante, S. Misra, E. Stankova, C. Torre, A. Rocha, D. Taniar, B. Apduhan, E. Tarantino, Y. Ryu (eds.) Computational Science and Its Applications—ICCSA 2018. Lecture Notes in Computer Science, vol. 10960, pp. 110–122. Springer, New York (2018)

  10. Fúster-Sabater, A.: Generation of cryptographic sequences by means of difference equations. Appl. Math. Inf. Sci. 8(2), 475–484 (2014)

    Article  MathSciNet  Google Scholar 

  11. Fúster-Sabater, A., Caballero-Gil, P.: Chaotic modelling of the generalized self-shrinking generator. Appl. Soft Comput. 11(2), 1876–1880 (2011). https://doi.org/10.1016/j.asoc.2010.06.002

    Article  MATH  Google Scholar 

  12. Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)

    MATH  Google Scholar 

  13. Gong, G.: Theory and applications of \(q\)-ary interleaved sequences. IEEE Trans. Inf. Theory 41(2), 400–411 (1995)

    Article  MathSciNet  Google Scholar 

  14. Hu, Y., Xiao, G.: Generalized self-shrinking generator. IEEE Trans. Inf. Theory 50(4), 714–719 (2004). https://doi.org/10.1109/TIT.2004.825256

    Article  MathSciNet  MATH  Google Scholar 

  15. Kanso, A.: Modified self-shrinking generator. Comput. Electr. Eng. 36(5), 993–1001 (2010). https://doi.org/10.1016/j.compeleceng.2010.02.004

    Article  MATH  Google Scholar 

  16. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  17. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15(1), 122–127 (1969). https://doi.org/10.1109/TIT.1969.1054260

    Article  MathSciNet  MATH  Google Scholar 

  18. Meier, W., Staffelbach, O.: The self-shrinking generator. In: A. De Santis (ed.) Advances in Cryptology—EUROCRYPT 1994. Lecture Notes in Computer Science, vol. 950, pp. 205–214. Springer, Berlin (1995). https://doi.org/10.1007/BFb0053436

  19. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  20. Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Berlin (2010)

    Book  Google Scholar 

  21. Zhang, B., Feng, D.: New guess-and-determine attack on the self-shrinking generator. In: X. Lai, K. Chen (eds.) Advances in Cryptology—ASIACRYPT 2006.Lecture Notes in Computer Science, vol. 4284, pp. 54–68. Springer, Berlin (2006). https://doi.org/10.1007/11935230_4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara D. Cardell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An earlier version of this paper was presented at the Conference “Linear Algebra, Matrix Analysis and Applications. ALAMA2018”, held in Sant Joan d’Alacant on May/June 2018.

This research has been partially supported by Ministerio de Economía, Industria y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER, UE) under project COPCIS, reference TIN2017-84844-C2-1-R, and by Comunidad de Madrid (Spain) under project CYNAMON, reference P2018/TCS-4566, also co-funded by European Union FEDER funds. Sara D. Cardell was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil, and Sao Paulo Research Foundation (FAPESP), grant 2013/25977-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fúster-Sabater, A., Cardell, S.D. Linear complexity of generalized sequences by comparison of PN-sequences. RACSAM 114, 79 (2020). https://doi.org/10.1007/s13398-020-00807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00807-5

Keywords

Mathematics Subject Classification

Navigation