Skip to main content
Log in

Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this paper, we prove that for \(a\ge 31/98\), the function

$$\begin{aligned} f_{a}\left( x\right) =\ln \Gamma \left( x+\frac{1}{2}\right) -x\ln x+x-\frac{ 1}{2}\ln \left( 2\pi \right) +\dfrac{x}{24}\dfrac{x^{2}+a-7/120}{ x^{4}+ax^{2}+\left( 98a-31\right) /1680} \end{aligned}$$

is strictly increasing (decreasing) and concave (convex) on \(\left( 0,\infty \right) \) if and only if \(a\ge 5281/6068\) (\(a=31/98\)). Moreover, we show that the necessary and sufficient condition for function

$$\begin{aligned} F_{a}\left( x\right) =-\left( x^{4}+ax^{2}+\frac{98a-31}{1680}\right) f_{a}\left( x\right) \end{aligned}$$

for \(a\in \mathbb {R}\) to be completely monotonic on \(\left( 0,\infty \right) \) is also \(a\ge 5281/6068\). These yield some new sharp bounds for the gamma function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burnside, W.: A rapidly convergent series for \( \log N!\). Messenger Math. 46, 157–159 (1917)

    Google Scholar 

  2. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Springer, Berlin (1988)

    MATH  Google Scholar 

  3. Gosper, R.W.: Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75, 40–42 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comp. 66(217), 373–389 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Alzer, H.: Sharp upper and lower bounds for the gamma function. Proc. R. Soc. Edinb. Sect. A 139, 709–718 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Smith, W.D.: The gamma function revisited (2006). http://schule.bayernport.com/gamma/gamma05.pdf

  7. Batir, N.: Sharp inequalities for factorial n. Proyecciones 27(1), 97–102 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Batir, N.: Inequalities for the gamma function. Arch. Math. (Basel) 91, 554–563 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Mortici, C.: An ultimate extremely accurate formula for approximation of the factorial function. Arch. Math. (Basel) 93(1), 37–45 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Mortici, C.: New sharp inequalities for approximating the factorial function and the digamma functions. Miskolc Math. Notes 11(1), 79–86 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Mortici, C.: Improved asymptotic formulas for the gamma function. Comput. Math. Appl. 61, 3364–3369 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Mortici, C.: A new Stirling series as continued fraction. Numer. Algorithms 56(1), 17–26 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Mortici, C.: Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Model. 57, 1360–1363 (2013)

    MathSciNet  Google Scholar 

  14. Mortici, C.: A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402, 405–410 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Mortici, C.: A new fast asymptotic series for the gamma function. Ramanujan J. 38, 549–559 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Nemes, G.: New asymptotic expansion for the Gamma function. Arch. Math. (Basel) 95, 161–169 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Nemes, G.: More accurate approximations for the gamma function. Thai J. Math. 9, 21–28 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Shi, X., Liu, F., Hu, M.: A new asymptotic series for the Gamma function. J. Comput. Appl. Math. 195, 134–154 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Feng, L., Wang, W.: Two families of approximations for the gamma function. Numer. Algorithms 64, 403–416 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Guo, B.-N., Zhang, Y.-J., Qi, F.: Refinements and sharpenings of some double inequalities for bounding the gamma function. J. Inequal. Pure Appl. Math. 9(1), 17 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Qi, F.: Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the gamma function. J. Comput. Appl. Math. 268, 155–167 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Chen, Ch-P: A more accurate approximation for the gamma function. J. Number Theory 164, 417–428 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Lu, D.: A new sharp approximation for the Gamma function related to Burnside’s formula. Ramanujan J. 35(1), 121–129 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Lu, D., Song, L., Ma, C.: Some new asymptotic approximations of the gamma function based on Nemes’ formula, Ramanujan’s formula and Burnside’s formula. Appl. Math. Comput. 253, 1–7 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Yang, Z., Tian, J.-F.: Monotonicity rules for the ratio of two Laplace transforms with applications. J. Math. Anal. Appl. 470(2), 821–845 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Yang, Z., Tian, J.-F.: A comparison theorem for two divided differences and applications to special functions. J. Math. Anal. Appl. 464(1), 580–595 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Yang, Z.-H., Chu, Y.-M.: Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 270, 665–680 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Yang, Z.-H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441, 549–564 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Yang, Z.-H., Tian, J.-F.: A class of completely mixed monotonic functions involving gamma function with applications. Proc. Am. Math. Soc. 146(11), 4707–4721 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Yang, Z.-H., Tian, J.-F.: Monotonicity and inequalities for the gamma function. J. Inequal. Appl. 2017, 317 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Yang, Z., Tian, J.-F.: Asymptotic expansions for the gamma function in terms of hyperbolic functions. J. Math. Anal. Appl. 478, 133–155 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Yang, Z.-H., Tian, J.-F.: A family of Windschitl type approximations for gamma function. J. Math. Inequal. 12(3), 889–899 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Yang, Z.-H., Tian, J.-F.: Two asymptotic expansions for gamma function developed by Windschitl’s formula. Open Math. 16, 1048–1060 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Yang, Z.-H., Tian, J.-F.: An accurate approximation formula for gamma function. J. Inequal. Appl. 2018, 56 (2018)

    MathSciNet  Google Scholar 

  35. Yang, Z.-H., Tian, J.-F.: Windschitl type approximation formulas for the gamma function. J. Inequal. Appl. 2018, 272 (2018)

    MathSciNet  Google Scholar 

  36. Luke, Y.L.: The special functions and their approximations, vol. I. New York Academic Press, New York (1969)

    MATH  Google Scholar 

  37. Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)

    MathSciNet  MATH  Google Scholar 

  38. Widder, D.V.: Necessary and sufficient conditions for the representation of a function as a Laplace integral. Trans. Am. Math. Soc. 33, 851–892 (1931)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by the Fundamental Research Funds for the Central Universities (Grant no. 2015ZD29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Feng Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZH., Tian, JF. Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function. RACSAM 113, 3603–3617 (2019). https://doi.org/10.1007/s13398-019-00719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-019-00719-z

Keywords

Mathematics Subject Classification

Navigation