Skip to main content
Log in

Abstract

We give a simple algorithm showing that the reduction of the multiplicity of a characteristic \(p>0\) hypersurface singularity along a valuation is possible if there is a finite linear projection which is defectless. The method begins with the algorithm of Zariski to reduce multiplicity of hypersurface singularities in characteristic 0 along a valuation. This gives a simple demonstration that the only obstruction to local uniformization in positive characteristic is from defect arising in finite projections of singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhyankar, S.: Local uniformization of algebraic surfaces over ground fields of characteristic \(p\ne 0\). Ann. Math. 63, 491–526 (1956)

    Article  MathSciNet  Google Scholar 

  2. Abhyankar, S.: Ramification Theoretic Methods in Algebraic Geometry. Princeton University Press, Princeton (1959)

    Book  Google Scholar 

  3. Abhyankar, S.: Resolution of Singularities of Embedded Algebraic Surfaces, 2nd edn. Springer, New York (1998)

    Book  Google Scholar 

  4. Benito, A., Villamayor, O.: Techniques for the study of singularities with application to resolution of 2-dim schemes. Math. Ann. 353, 1037–1068 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bravo, A., Villamayor, O.: Singularities in positive characteristic, stratification and simplification of the singular locus. Adv. Math. 224, 1349–1418 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cossart, V., Piltant, O.: Resolution of singularities of threefolds in positive characteristic I. Reduction to local uniformization on Artin–Schreier and purely inseparable coverings. J. Algebra 320, 1051–1082 (2008)

    Article  MathSciNet  Google Scholar 

  7. Cossart, V., Piltant, O.: Resolution of singularities of threefolds in positive characteristic II. J. Algebra 321, 1836–1976 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cossart, V., Jannsen, U., Saito, S.: Canonical embedded and non-embedded resolution of singularities for excellent two-dimensional schemes. arXiv:0905.2191

  9. Cutkosky, S.D.: Local factorization and monomialization of morphisms. Astérisque 260 (1999)

  10. Cutkosky, S.D.: Resolution of singularities for 3-folds in positive characteristic. Am. J. Math. 131, 59–127 (2009)

    Article  MathSciNet  Google Scholar 

  11. Cutkosky, S.D.: Finite generation of extensions of associated graded rings along a valuation. J. Lond. Math. Soc. 98, 177–203 (2018)

    Article  MathSciNet  Google Scholar 

  12. Cutkosky, S.D., Piltant, O.: Ramification of valuations. Adv. Math. 183, 1–79 (2004)

    Article  MathSciNet  Google Scholar 

  13. de Jong, A.J.: Smoothness, semi-stablility and alterations. Inst. Hautes Etudes Sci. Publ. Math. 83, 51–93 (1996)

    Article  Google Scholar 

  14. Endler, O.: Valuation Theory. Springer, New York (1972)

    Book  Google Scholar 

  15. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)

    Article  MathSciNet  Google Scholar 

  16. Hironaka, H.: Three Key Theorems on Infinitely Near Singularities, Singularités Franco-Japonaises, 87-126, Sémin. Congr. 10 Soc. Math. France, Paris (2005)

  17. Illusie, L., et al.: Travaux de Gabber sur L’uniformisation Local et la Cohomologie Étale des Schemes Quasi-Excellents. Astérisque 363 (2014)

  18. Knaf, H., Kuhlmann, F.-V.: Abhyankar places admit local uniformization in any characteristic. Ann. Sci. École Norm. Sup. 38, 833–846 (2005)

    Article  MathSciNet  Google Scholar 

  19. Knaf, H., Kuhlmann, F.-V.: Every place admits local uniformization in a finite extension of the function field. Adv. Math. 221, 428–453 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kuhlmann, F.-V.: Valuation theoretic and model theoretic aspects of local uniformization. In: Hauser, H., Lipman, J., Oort, F., Quiros, A. (eds.) Resolution of Singularities—A Research Textbook in Tribute to Oscar Zariski, Progress in Mathematics, vol. 181, pp. 4559–4600. Birkhäuser, Basel (2000)

    Google Scholar 

  21. Kuhlmann, F.-V.: A classification of Artin Schreier defect extensions and a characterization of defectless fields. Ill. J. Math. 54, 397–448 (2010)

    Article  MathSciNet  Google Scholar 

  22. Lipman, J.: Desingularization of 2-dimensional schemes. Ann. Math. 107, 115–207 (1978)

    Article  MathSciNet  Google Scholar 

  23. MacLane, S.: A construction for absolute values in polynomial rings. Trans. Am. Math. Soc. 40, 363–395 (1936)

    Article  MathSciNet  Google Scholar 

  24. MacLane, S.: A construction for prime ideals as absolute values of an algebraic field. Duke Math. J. 2, 492–510 (1936)

    Article  MathSciNet  Google Scholar 

  25. Novacoski, J., Spivakovsky, M.: Reduction of local uniformization to the rank 1 case, Valuation Theory in Interaction. EMS Ser. Conor. Rep, pp. 404–431. Eur Math Soc, Zurich (2014)

    MATH  Google Scholar 

  26. Piltant, O.: An axiomatic version of Zariski’s patching theorem. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Math. RACSAM 107, 91–121 (2013)

    Article  MathSciNet  Google Scholar 

  27. Ribenboim, P.: Théorie des valuations. Les Presses Universitaires de Montreal, Montreal (1964)

    MATH  Google Scholar 

  28. San Saturnino, J.-C.: Defect of an extension, key polynomials and local uniformization. J. Algebra 481, 91–119 (2017)

    Article  MathSciNet  Google Scholar 

  29. Teissier, B.: Overweight deformations of affine toric varieties and local uniformization. In: Campillo, A., Kehlmann, F.V., Teissier, B. (eds.) Valuation Theory in Interaction, Proceedings of the Second International Conference on Valuation Theory, Segovia-El Escorial, 2011. European Math. Soc. Publishing House, Congress Reports Series, pp. 474–565 (2014)

  30. Temkin, M.: Inseparable local uniformization. J. Algebra 373, 65–119 (2013)

    Article  MathSciNet  Google Scholar 

  31. Vaquié, M.: Extension d’une valuation. Trans. Am. Math. Soc. 359, 3439–3481 (2007)

    Article  MathSciNet  Google Scholar 

  32. Vaquié, M.: Famille admissible de valuations et défaut d’une extension. J. Algebra 311, 859–876 (2007)

    Article  MathSciNet  Google Scholar 

  33. Zariski, O.: Local uniformization of algebraic varieties. Ann. Math. 41, 852–896 (1940)

    Article  MathSciNet  Google Scholar 

  34. Zariski, O.: Reduction of the singularities of algebraic 3 dimensional varieties. Ann. Math. 45, 472–542 (1944)

    Article  MathSciNet  Google Scholar 

  35. Zariski, O., Samuel, P.: Commutative Algebra, vol. II. Van Nostrand, Princeton (1960)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Dale Cutkosky.

Additional information

Dedicated to Professor Felipe Cano on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Steven Dale Cutkosky was partially supported by NSF. Hussein Mourtada was partially supported by a Miller Fellowship at the University of Missouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutkosky, S.D., Mourtada, H. Defect and local uniformization. RACSAM 113, 4211–4226 (2019). https://doi.org/10.1007/s13398-019-00717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-019-00717-1

Keywords

Mathematics Subject Classification

Navigation