Skip to main content
Log in

Rough maximal functions supported by subvarieties on Triebel–Lizorkin spaces

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this paper, we establish the boundedness of a class of maximal functions related to rough singular integrals supported by compound subvarieties on Triebel–Lizorkin spaces and Besov spaces. As applications, several corresponding estimates of maximal functions related to parametric Marcinkiewicz integrals are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Qassem, H.M.: Maximal operators related to block spaces. Kodai Math. J. 28, 494–510 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Qassem, H.M., Cheng, L., Pan, Y.: On certain rough integral operators and extrapolation. J. Inequa. Pure Appl. Math. 10, 1–29 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Al-Qassem, H.M., Pan, Y.: On certain estimates for Marcinkiewicz integrals and extrapolation. Collect. Math. 60, 123–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Al-Salman, A.: On maximal functions with rough kernels in \(L(\log ^+L)^{1/2}({{\rm S}}^{n-1})\). Collet. Math. 56, 47–56 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Al-Salman, A.: On a class of singular integral operators with rough kernels. Can. Math. Bull. 49, 3–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Al-Salman, A.: Rough maximal functions supported by subvarieties. J. Oper. Theory 59, 263–275 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Al-Salman, A., Pan, Y.: Singular integrals with rough kernels in \(L(\log ^+L)({{\rm S}}^{n-1})\). J. Lond. Math. Soc. 66, 153–174 (2002)

    Article  MATH  Google Scholar 

  8. Chen, Y., Ding, Y., Liu, H.: Rough singular integrals supported on submanifolds. J. Math. Anal. Appl. 368, 677–691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, L., Lin, H.: A maximal operator related to a class of singular integrals. Illinois J. Math. 34, 120–126 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Coifman, R., Weiss, G.: Extension of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colzani, L.: Hardy spaces on spheres. PhD thesis, Washington University, St. Louis (1982)

  12. Fan, D., Pan, Y.: Singular integral operators with rough kernels supported by subvarieties. Am. J. Math. 119, 799–839 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fefferman, R.: A note on singular integrsls. Proc. Am. Math. Soc. 74, 266–270 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and the study of function spaces. CBMS Reg. Conf. Ser. vol. 79. Amer. Math. Soc., Providence, RI (1991)

  15. Liu, F.: Rough maximal operators supported by compound subvarieties. Acta Math. Sin. (Chin. Ser.) 59, 561–576 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Liu, F.: Integral operators of Marcinkiewicz type on Triebel–Lizorkin spaces. Math. Nachr. 290, 75–96 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, F., Wu, H.: Rough singular integrals associated to compound mappings on Triebel–Lizorkin spaces and Besov spaces. Taiwanese J. Math. 18, 127–146 (2014)

    Article  MathSciNet  Google Scholar 

  18. Liu, F., Wu, H.: On Marcinkiewicz integrals associated to compound mappings with rough kernels. Acta Math. Sin. (Engl. Ser.) 30, 1210–1230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, Y., Lu, S.: \(L^p\) boundedness of a class of maximal singular integral operators. Acta Math. Sin. (Chin. Ser.) 35, 63–72 (1992)

    MathSciNet  MATH  Google Scholar 

  20. Triebel, H.: Theory of Function Spaces, Monogr. Math. vol. 78, Birkhäser Verlag, Basel (1983)

  21. Xu, H., Fan, D., Wang, M.: Some maximal operators related to families of singular integral operators. Acta Math. Sin. (Engl. Ser.) 20, 441–452 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stein, E.M.: Problems in harmonic analysis related to curvature and oscillatory integrals, in Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, Chlif., 1986), Amer. Math. Soc., Providene, pp. 196-221 (1987)

  23. Yabuta, K.: Triebel–Lizorkin space bounddedness of Marcinkiewicz integrals associated to surfaces. Appl. Math. J. Chin. Univ. 30, 418–446 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, C., Chen, J.: Boundedness of \(g\)-functions on Triebel–Lizorkin spaces. Taiwanese J. Math. 13, 973–981 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, C., Chen, J.: Boundedness of Marcinkiewicz integral on Triebel–Lizorkin spaces. Appl. Math. J. Chin. Univ. Ser. B 25, 48–54 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NNSF of China (No. 11526122), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2015RCJJ053), Research Award Fund for Outstanding Young Scientists of Shandong Province (No. BS2015SF012) and Support Program for Outstanding Young Scientific and Technological Top-notch Talents of College of Mathematics and Systems Science (No. Sxy2016K01). We would like to thank the referees very much for their invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Appendix

Appendix

In this section we give the definitions of several rough kernels we used. Recall that the Hardy space \(H^1(\mathrm{S}^{n-1})\) is the set of all \(L^1(\mathrm{S}^{n-1})\) functions which satisfy \(\Vert f\Vert _{H^1(\mathrm{S}^{n-1})}<\infty \), where

$$\begin{aligned} \Vert \varOmega \Vert _{H^1(\mathrm{S}^{n-1})}:=\int _{\mathrm{S}^{n-1}}\sup \limits _{0\le r<1}\left| \int _{\mathrm{S}^{n-1}}\varOmega (\theta )\frac{1-r^2}{|rw-\theta |^n}d\sigma (\theta )\right| d\sigma (w). \end{aligned}$$

The class \(L(\log ^+L)^\alpha (\mathrm{S}^{n-1})\) (for \(\alpha >0\)) denotes the class of all measurable functions \(\varOmega \) on \(\mathrm{S}^{n-1}\) which satisfy

$$\begin{aligned} \Vert \varOmega \Vert _{L(\log ^{+}L)^\alpha (\mathrm{S}^{n-1})}:=\int _{\mathrm{S}^{n-1}}|\varOmega (\theta )|\log ^\alpha (|\varOmega (\theta )|+2)d\sigma (\theta )<\infty . \end{aligned}$$

Now we recall the definition of the block space \(B_q^{(0,v)}(\mathrm{S}^{n-1})\). The block spaces in \(\mathbf {R}^n\) originated from the work of Taibleson and Weiss on the convergence of the Fourier series in connection with developments of the real Hardy spaces. The block spaces on \(\mathrm{S}^{n-1}\) was introduced by Jiang and Lu [19] in studying the homogeneous singular integral operators. A q-block on \(\mathrm{S}^{n-1}\) is an \(L^q(\mathrm{S}^{n-1})\) (\(1<q\le \infty )\) function b which satisfies \(\mathrm{supp}(b)=I\) and \(\Vert b\Vert _q\le |I|^{1-1/q}\), where \(|I|=\sigma (I)\), and \(I=\{x\in \mathrm{S}^{n-1}:|x-x_0|<\alpha \}\) for some \(\alpha \in (0,1]\) and \(x_0\in \mathrm{S}^{n-1}\). The block \(B_q^{(0,v)}(\mathrm{S}^{n-1})\) is defined by

$$\begin{aligned} B_q^{(0,v)}(\mathrm{S}^{n-1}):=\{\varOmega \in L^1(\mathrm{S}^{n-1}):\varOmega =\sum \limits _{\mu =1}^\infty \lambda _\mu b_\mu ,\ \ M_q^{(0,v)}(\{\lambda _\mu \})<\infty \}, \end{aligned}$$

where \(v>-1\), \(\lambda _\mu \in \mathbf {C}, b_\mu \) is a q-block supported on a cap \(I_\mu \) on \(\mathrm{S}^{n-1}\) and

$$\begin{aligned} M_q^{(0,v)}(\{\lambda _\mu \})=\sum \limits _{\mu =1}^\infty |\lambda _\mu |\big (1+\log ^{(v+1)}(|I_\mu |^{-1})\big ). \end{aligned}$$

The norm of \(B_q^{(0,v)}(\mathrm{S}^{n-1})\) is given by

$$\begin{aligned} \Vert \varOmega \Vert _{B_q^{(0,v)}(\mathrm{S}^{n-1})}:=N_q^{(0,v)}(\varOmega )=\inf \{M_q^{(0,v)}(\{\lambda _\mu \})\}, \end{aligned}$$

where the infimum is taken over all q-block decompositions of \(\varOmega \).

It is known that for any \(0<\beta <1, L(\log ^+L)^{\beta }(\mathrm{S}^{n-1})\) and \(H^1(\mathrm{S}^{n-1})\) do not contained each other. Moreover, the following proper inclusion relations are known:

$$\begin{aligned}&\displaystyle L^r(\mathrm{S}^{n-1})\subset L(\log ^+L)^{\beta _1}(\mathrm{S}^{n-1})\subset L(\log ^+L)^{\beta _2}(\mathrm{S}^{n-1})\ \mathrm{for}\ r>1\ \mathrm{and}\ 0<\beta _2<\beta _1;\nonumber \\&\displaystyle L(\log ^+L)^{\beta }(\mathrm{S}^{n-1})\subset H^1(\mathrm{S}^{n-1})\ \mathrm{for}\ \beta \ge 1;\nonumber \\&\displaystyle \bigcup \limits _{r>1}L^r(\mathrm{S}^{n-1})\subset B_q^{(0,v)}(\mathrm{S}^{n-1})\ \mathrm{if} \ q>1\ \mathrm{and}\ v>-1;\nonumber \\&\displaystyle B_q^{(0,v_2)}(\mathrm{S}^{n-1})\subset B_q^{(0,v_1)}(\mathrm{S}^{n-1})\ \mathrm{if} \ q>1\ \mathrm{and}\ v_2>v_1>-1;\nonumber \\&\displaystyle B_q^{(0,v)}(\mathrm{S}^{n-1})\subset H^1(\mathrm{S}^{n-1})+L(\log ^+L)^{1+v}(\mathrm{S}^{n-1})\ \mathrm{for}\ q>1\ \mathrm{and}\ v>-1. \end{aligned}$$
(4.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F. Rough maximal functions supported by subvarieties on Triebel–Lizorkin spaces. RACSAM 112, 593–614 (2018). https://doi.org/10.1007/s13398-017-0400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-017-0400-0

Keywords

Mathematics Subject Classification

Navigation