Skip to main content
Log in

Students’ understanding of the function-derivative relationship when learning economic concepts

  • Original Article
  • Published:
Mathematics Education Research Journal Aims and scope Submit manuscript

Abstract

The aim of this study is to characterise students’ understanding of the function-derivative relationship when learning economic concepts. To this end, we use a fuzzy metric (Chang 1968) to identify the development of economic concept understanding that is defined by the function-derivative relationship. The results indicate that the understanding of these economic concepts is linked to students’ capacity to perform conversions and treatments between the algebraic and graphic registers of the function-derivative relationship when extracting the economic meaning of concavity/convexity in graphs of functions using the second derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ariza, A., & Llinares, S. (2009). The usefulness of derivative concept in learning economic concepts by high school and university students. Enseñanza de las Ciencias, 27(1), 121–136.

    Google Scholar 

  • Arnold, I. J. M., & Straten, J. T. (2012). Motivation and math skills as determinants of first-year performance in economics. The Journal of Economic Education, 43(1), 33–47.

    Article  Google Scholar 

  • Arnon, I., Cottrill, J., Dubinksy, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS Theory. A framework for research and curriculum development in mathematics education. London: Springer.

    Google Scholar 

  • Ballard, C. L., & Johnson, F. (2004). Basic math skills and performance in an introductory economics class. The Journal of Economic Education, 35(1), 3–23.

    Article  Google Scholar 

  • Butler, J. S., Finegan, T. A., & Siegfried, J. J. (1998). Does more calculus improve student learning in intermediate micro-and macroeconomic theory? Journal of Applied Econometrics, 13(2), 185–202.

    Article  Google Scholar 

  • Chang, C. L. (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24(1), 182–190.

    Article  Google Scholar 

  • De Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2007). The illusion of linearity. From analysis to improvement. London: Springer.

    Google Scholar 

  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95–123). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine: registres sémiotiques et apprentissages intellectuels Paris: Peter lang [traducción : Semiosis y pensamiento humano. Registros semióticos y aprendizajes intelectuales

  • Elia, I. (2006). How students conceive function: a triadic conceptual- semiotic model of the understanding of a complex concept. The Montana Mathematics Enthusiast, 3(2), 256–272.

    Google Scholar 

  • Gagatsis, A., & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational Psychology, 24(5), 645–657.

    Article  Google Scholar 

  • Gagatsis, A., Elia, I., & Mousoulides, N. (2006). Are registers of representations and problem solving processes on functions compartmentalized in students thinking? Department of Education: University of Cyprus.

    Google Scholar 

  • Gamer, B., & Gamer, L. (2001). Retention of concepts and skills in traditional and reformed applied calculus. Mathematics Education Research Journal, 13(3), 165–184.

    Article  Google Scholar 

  • García, M., Llinares, S., & Sánchez-Matamoros, G. (2011). Characterizing thematized derivative schema by the underlying emergent structures. International Journal of Science and Mathematics Education, 9, 1023–1045.

    Article  Google Scholar 

  • George, A., & Veeramani, P. V. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64, 395–399.

    Article  Google Scholar 

  • Gery, F. W. (1970). Mathematics and the understanding of economic concepts. The Journal of Economic Education, 2(1), 100–104.

    Google Scholar 

  • Habre, S., & Abboud, M. (2006). Student’s conceptual understanding of a function and its derivative in an experimental calculus course. The Journal of Mathematical Behavior, 25, 57–72.

    Article  Google Scholar 

  • Haciomeroglu, E. S., Aspinwall, L., & Presmerg, N. C. (2010). Contrasting cases of calculus Students’ understanding of derivative graphs. Mathematical Thinking and Learning, 12(2), 152–176.

    Article  Google Scholar 

  • Hey, J. D. (2005). I teach economics, Not algebra and calculus. The Journal of Economic Education, 36(3), 292–304.

    Article  Google Scholar 

  • Piaget, J. and Garcia, R. (1989). Psychogenesis and the history of science (H. Feider, Trans.). New York: Columbia University Press. (Original work published 1983).

  • Sánchez-Matamoros, G., García, M., & Llinares, S. (2013). Some indictors of the development of derivative schema. BOLEMA, 27(45), 281–302.

    Article  Google Scholar 

  • Stamatis, D.H. (2014). Understanding Mathematical Concepts in Finance and Economics. Bookstand Publishing

  • Vrancken, S., Engler, A. and Müller, D. (2011). Una propuesta para la introducción del concepto de derivada desde la variación: análisis de resultados. Facultad de Ciencias Agrarias - Universidad Nacional del Litoral-Santa Fe (Argentina)

  • Yoon, Y., & Thomas, M. (2015). Graphical construction of a local perspective on differentiation and integration. Mathematics Education Research Journal, 27(2), 183–200.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Inform. Control, 8, 338–353.

    Article  Google Scholar 

  • Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivate. In E. Dubinsky; A. Shoenfeld; J. Kaput (Eds.), Research in Collegiate Mathematics Education IV CBMS Issues in Mathematics Education. Providence, RI: American Mathematical Society, 2000, 103–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Llinares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariza, A., Llinares, S. & Valls, J. Students’ understanding of the function-derivative relationship when learning economic concepts. Math Ed Res J 27, 615–635 (2015). https://doi.org/10.1007/s13394-015-0156-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-015-0156-9

Keywords

Navigation