Skip to main content
Log in

Generalized Nadler type results in ultrametric spaces with applications to well-posedness

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

The aim of this paper to establish the existence and uniqueness of coincidence and common fixed points of Nadler type set-valued mappings under various generalized contractive conditions in the context of ultrametric spaces. Illustrative examples are provided to support our results. As an application, we have obtained well-posedness of the common fixed point problems. The presented results generalize several existing results in the literature in ultrametric space setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordji, M.E., Baghani, H., Khodaei, H., Ramezant, M.: A generalization of Nadler’s fixed point theorem. J. Nonlinear Sci. Appl. 3(2), 148–151 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Hong, S.: Fixed points of multivalued operators in ordered metric spaces with applications. Nonlinear Anal. 72, 3929–3942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Quantina, K., Kamran, T.: Nadlers type principle with high order of convergence. Nonlinear Anal. 69, 4106–4120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Reich, S.: Fixed points of contractive functions. Boll. Un. Mat. Ital. 5, 26–42 (1972)

    MathSciNet  MATH  Google Scholar 

  5. Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62, 104–113 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shen, M., Hong, S.: Common fixed points for generalized contractive multivalued operators in complete metric spaces. Appl. Math. Lett. 22, 1864–1869 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Suzuki, T.: Mizoguchi–Takahashi’s fixed point theorem is a real generalization of Nadlers. J. Math. Anal. Appl. 340, 752–755 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Damjanović, B., Samet, B., Vetro, C.: Common fixed point theorems for multi-valued maps. Acta Mathematica Scientia 32B(2), 818–824 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Groot, J.: Non-Archimedean metrics in topology. Proc. Am. Math. Soc. 7(6), 948–956 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Priess-Crampe, S., Ribenboim, P.: Generalized ultrametric spaces I. Abh. Math. Sem. Univ. Hamburg 66, 55–73 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Priess-Crampe, S., Ribenboim, P.: Generalized ultrametric spaces II. Abh. Math. Sem. Univ. Hamburg 67, 19–31 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Priess-Crampe, S., Ribenboim, P.: The common point theorem for ultrametric spaces. Geometriae Dedicata 72, 105–110 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brzdȩk, J., Ciepliński, K.: A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal. 74, 6861–6867 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kirk, W.A., Shahzad, N.: Some fixed point results in ultrametric spaces. Topol Appl 159, 3327–3334 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar, D.R., Pitchaimani, M.: Set-valued contraction mappings of Prešić–Reich type in ultrametric spaces. Asian Eur. J. Math. 10(4), 1750065 (1–15). doi:10.1142/S1793557117500656 (2017)

  16. Kumar, D.R., Pitchaimani, M.: A generalization of set-valued Prešić–Reich type contractions in ultrametric spaces with applications. J. Fixed Point Theory Appl. (2016). doi:10.1007/s11784-016-0338-4

  17. Gajić, L.: On ultra metric spaces. Novi Sad J. Math. 31(2), 69–71 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Gouvêa, F.Q.: p-Adic Numbers, An Introduction, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  19. Hardy, G.E., Rogers, T.D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nadler Jr., N.B.: Multi-valued contraction mappings. Pacific J. Math. 30, 475–488 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wardowski, D.: On set-valued contractions of Nadler type in cone metric spaces. Appl. Math. Lett. 24, 275–278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reich, S.: Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 4, 1–11 (1971)

    MathSciNet  MATH  Google Scholar 

  23. De Blasi, F.S., Myjak, J.: Sur la porosité de l’ensemble des contractions sans point fixe. C.R. Acad. Sci. Paris 308, 51–54 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Lucchetti, R., Revalski, J.: Recent Developments in Well-Posed Variational Problems. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  25. Huang, X.X., Yang, X.Q.: Generalized Levitin–Polyak well-posedness in constrained optimization. SIAM J Optim. 17, 243–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bianchia, M., Kassay, G., Pini, R.: Well-posed equilibrium problems. Nonlinear Anal. 72, 460–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, R., Fang, Y.P.: Levitin–Poylak well-posedness of variational inequalities. Nonlinear Anal. 72, 373–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author D. Ramesh Kumar would like to thank the University Grant Commission, New Delhi, India for providing the financial support in the form of UGC Non-Net fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ramesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitchaimani, M., Kumar, D.R. Generalized Nadler type results in ultrametric spaces with applications to well-posedness. Afr. Mat. 28, 957–970 (2017). https://doi.org/10.1007/s13370-017-0496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-017-0496-6

Keywords

Mathematics Subject Classification

Navigation