Skip to main content
Log in

Nanofluid flow towards a convectively heated stretching surface with heat source/sink: a lie group analysis

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

This paper considers the steady two dimensional flow of an electrically conducting nanofluid over a vertical convectively heated permeable stretching surface with variable stream conditions in presence of a uniform transverse magnetic field and internal heat source/sink. The transport equations include the effects of Brownian motion and thermophoresis. The governing partial differential equations are converted to ordinary differential equations via Lie group analysis. We employ an extensively validated, highly efficient symbolic software MATHEMATICA using finite difference code to study the problem numerically. The influences of various relevant parameters on the temperature and nanoparticle volume fraction as well as wall heat flux and wall mass flux are elucidated through graphs and tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lie, S.: Verallgemeinerung und neue Verwertung der Jacobischen Multiplikatortheorie. In: Christiania Forh., pp. 255–274 (1874)

  2. Lie, S., Engel, F.: Theorie der Transformationsgruppen, vol. 3. Teubner, Leipzig (1888–1893)

  3. Lie, S. : Gesammelte Abhandlungen, vol. 7. Teubner, Leipzig (1922–1960)

  4. Hansen, A.G.: Similarity Analysis of Boundary Layer Problems in Engineering. Prentice Hall, Englewood Cliffs (1964)

    Google Scholar 

  5. Ames, W.F.: Nonlinear Partial Differential Equations in Engineering. Academic Press, New York (1972)

    MATH  Google Scholar 

  6. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  7. Pakdemirli, M., Yurusoy, M.: Similarity transformations for partial differential equations. SIAM Rev. 40, 96–101 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Oberlack, M.: Similarity in non-rotating and rotating turbulent pipe flows. J. Fluid Mech. 379, 1–22 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Yurusoy, M., Pakdemirli, M., Noyan, O.F.: Lie group analysis of creeping flow of a second grade fluid. Int. J. Non-Linear Mech. 36, 955–960 (2001)

    Article  MathSciNet  Google Scholar 

  10. Torrisi, M., Tracina, R.: Second order differential invariants of a family of diffusion equations. J. Phys. A Math. Theor. 38, 7519–7526 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gandarias, M.L., Torrisi, M., Tracina, R.: On some differential invariants for a family of diffusion equations. J. Phys. A Math. Theor. 40, 8803–8813 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. Dev. Appl. Non-Newtonian Flows 66, 99–105 (1995)

    Google Scholar 

  13. Eastman, J.A., Choi, S.L.S.S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  14. Xuan, Y., Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 125, 151–155 (2003)

    Google Scholar 

  15. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  16. Kuznetsov, A.V., Nield, D.A.: Natural convective boundary layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  17. Khan, W.A., Aziz, A.: Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. Int. J. Therm. Sci. 50, 1207–1214 (2011)

    Article  Google Scholar 

  18. Van Gorder, R.A., Sweet, E., Vajravelu, K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numer. Simul. 15, 1494–1500 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Khan, W.A., Pop, I.: Boundary layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  20. Hassan, M., Tabar, M.M., Nemati, H., Domairry, G., Noori, F.: An analytical solution for boundary layer flow of a nanofluid past a stretching sheet. Int. J. Therm. Sci. 50, 2256–2263 (2011)

    Article  Google Scholar 

  21. Yao, S., Fang, T., Zhong, Y.: Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 752–760 (2011)

    Article  MATH  Google Scholar 

  22. Kandasamy, R., Loganathanb, P., Puvi Arasub, P.: Scaling group transformation for MHD boundary layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection. Nucl. Eng. Des. 241, 2053–2059 (2011)

    Article  Google Scholar 

  23. Aziz, A.: A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simul. 14, 1064–1068 (2009)

    Article  MathSciNet  Google Scholar 

  24. Makinde, O.D., Aziz, A.: MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition. Int. J. Therm. Sci. 49, 1813–1820 (2010)

    Article  Google Scholar 

  25. Ishak, A.: Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition. Appl. Math. Comput. 217, 837–842 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011)

    Article  Google Scholar 

  27. Aziz, A., Khan, W.A.: Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate. Int. J. Therm. Sci. 52, 83–90 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their very sincere thanks to the honorable referees for the valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalidas Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, P.K., Das, K. & Jana, S. Nanofluid flow towards a convectively heated stretching surface with heat source/sink: a lie group analysis. Afr. Mat. 25, 363–377 (2014). https://doi.org/10.1007/s13370-012-0124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-012-0124-4

Keywords

Mathematics Subject Classification (2010)

Navigation