Skip to main content

Advertisement

Log in

Discrete-time exploited fish epidemic models

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

We extend classic discrete-time susceptible-infective-susceptible (SIS) and susceptible-exposed-infectious-susceptible epidemic models to include disease transmission dynamics in exploited fish populations that exhibit compensatory (contest competition) and overcompensatory (scramble competition) stock dynamics with and without the strong Allee effect. We compute the basic reproductive number, \({\mathfrak{R}_{0}}\), and use it to predict the (uniform) persistence or extinction of the infective exploited fish population, where the fish stock dynamics are compensatory and the strong Allee mechanism is either present or absent. We use the SIS epidemic model to explore the relationship between the stock demographic equation and the epidemic process, where the total stock population dynamics are overcompensatory. As in “higher” human and animal populations, we show that the demographic exploited fish population dynamics drive both the susceptible and infective stock dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen L., Burgin A.M.: Comparison of deterministic and stochastic SIS and SIR models in discrete-time. Math. Biosci. 163, 1 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen L.: Some discrete-time SI, SIR and SIS models. Math. Biosci. 124, 83 (1994)

    Article  MATH  Google Scholar 

  3. Allen L., van den Driessche P.: The basic reproduction number is some discrete-time epidemic models. J. Diff. Eqns. Appl. 14(10–11), 1127–1147 (2008)

    Article  MATH  Google Scholar 

  4. Anderson R.M., May R.M.: Infectious diseases of humans: dynamics and control. Oxford University, Oxford (1992)

    Google Scholar 

  5. Arreola, R., Crossa, A., Velasco, M.C.: Discrete-time S-E-I-S models with dispersal between two patches, Biometric Department, MTBI Cornell University Technical Report (2000)

  6. Bailey N.T.J.: The simple stochastic epidemic: a complete solution in terms of known functions. Biometrika. 50, 235 (1963)

    MathSciNet  MATH  Google Scholar 

  7. Begon M., Harper J.L., Townsend C.R.: Ecology: Individuals, Populations And Communities. Blackwell, Oxford (1996)

    Google Scholar 

  8. Best J., Castillo-Chavez C., Yakubu A.-A.: Hierarchical competition in discrete time models with dispersal. Fields Inst. Commun. 36, 59–86 (2003)

    MathSciNet  Google Scholar 

  9. Beverton, R.J.H., Holt, S.J.: On the dynamics of exploited fish populations, H. M. Stationery Off., London, Fish. Invest., 2, 19, (1957)

  10. Castillo-Chavez C., Yakubu A.: Dispersal, disease and life-history evolution. Math. Biosci. 173, 35–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castillo-Chavez C., Yakubu A.: Epidemics on attractors. Contemp. Math. 284, 23–42 (2001)

    MathSciNet  Google Scholar 

  12. Castillo-Chavez C., Yakubu A.: Discrete-time S-I-S models with complex dynamics. Nonlinear Anal. TMA 47(7), 4753–4762 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Castillo-Chavez, C., Yakubu, A.A.: Intraspecific competition, dispersal and disease dynamics in discrete-time patchy environments. In: Castillo-Chavez, C., Blower, S., van den Driessche, P., Denise, K., Abdul-Aziz, Y. (Eds.) Mathematical Approaches For Emerging and Reemerging Infectious Diseases: An Introduction to Models, Methods and Theory, Springer, New York (2002)

  14. Caswell, H.: Matrix Population Models: Construction, Analysis and Interpretation, Sinauer Associates Inc, Sunderland (2001)

  15. Cooke K.L., Yorke J.A.: Some equations modelling growth processes of gonorrhea epidemics. Math. Biosci. 16, 75 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cull P.: Local and global stability for population models. Biol. Cybern. 54, 141 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elaydi S.N.: Discrete Chaos. Chapman & Hall/CRC, Boca Raton (2000)

    MATH  Google Scholar 

  18. Elaydi S.N., Yakubu A.-A.: Global stability of cycles: Lotka–Volterra competition model with stocking. J. Differ. Equ. Appl. 8(6), 537–549 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ewald P.W.: Evolution of infectious disease. Oxford University, Oxford (1994)

    Google Scholar 

  20. Franke J.E., Yakubu A.-A.: Discrete-time SIS epidemic model in a seasonal environment. SIAM J. Appl. Math. 66(5), 1563–1587 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Franke J.E., Yakubu A.-A.: Disease-induced mortality in density-dependent discrete-time SIS epidemic models. J. Math. Biol. 57, 755–790 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hadeler K.P., van den Driessche P.: Backward bifurcation in epidemic control. Math. Biosci. 146, 15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hassell, M.P.: The Dynamics of Competition and Predation. Studies in Biology, vol. 72, The Camelot Press Ltd., Southampton (1976)

  24. Hassell M.P., Lawton J.H., May R.M.: Patterns of dynamical behavior in single species populations. J. Anim. Ecol. 45, 471–486 (1976)

    Article  Google Scholar 

  25. Kocic, V.L., Ladas, G.: Global behavior of nonlinear difference equations of higher order with applications. Mathematics and its Applications, vol. 256, Kluwer Academic Publishers Group, Dordrecht (1993)

  26. Kulenovic M.S., Yakubu A.-A.: Compensatory versus overcompensatory dynamics in density-dependent Leslie models. J. Differ. Equ. Appl. 10(13–15), 1251–1265 (2004)

    MathSciNet  MATH  Google Scholar 

  27. May R.M., Oster G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–579 (1976)

    Article  Google Scholar 

  28. May R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–469 (1977)

    Article  Google Scholar 

  29. May R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1974)

    Google Scholar 

  30. McClusky C.C., Muldowney J.C.: Bendixson–Dulac criteria for difference equations. J. Dyn. Differ. Equ. 10, 567 (1998)

    Article  Google Scholar 

  31. Nicholson A.J.: Compensatory reactions of populations to stresses, and their evolutionary significance. Aust. J. Zool. 2, 1–65 (1954)

    Article  Google Scholar 

  32. Rios-Soto, K.R., Castillo-Chavez, C., Neubert, M.G., Titi, E.S., Yakubu, A.: Epidemic spread in populations at demographic equilibrium, Contemporary Mathematics, AMS, Mathematical Studies on Human Disease Dynamic: Emerging Paradigms and Challenges, vol. 410, pp. 297–309 (2006)

  33. van den Driessche P., Watmough J.: A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40, 525 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reno P.W.: Factors involved in the dissemination of disease in fish populations. J. Aquat. Animal Health 10, 160–171 (1998)

    Article  Google Scholar 

  35. Yakubu A.-A.: Allee effects in a discrete-time SIS epidemic model with infected newborns. J. Differ. Equ. Appl. 13(4), 341–356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yakubu A.-A.: Discrete-time metapopulation dynamics and unidirectional dispersal. J. Differ. Equ. Appl. 9(7), 633–653 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yakubu, A.-A.: Introduction to discrete-time epidemic model, DIMACS Series in Discrete Mathematics and Thoeretical Computer Science (in press)

  38. Yakubu A.-A., Fogarty M.: Spatially discrete metapopulation models with directional dispersal. Math. Biosci. 204, 68–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yodzis P.: Introduction to Theoretical Ecology. Harper and Row Publishers, New York (1989)

    MATH  Google Scholar 

  40. Zhao X.-Q.: Asymptotic behavior for asymptotically periodic semiflows with applications. Comm. Appl. Nonlinear Anal. 3, 43–66 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Aziz Yakubu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakubu, AA., Ziyadi, N. Discrete-time exploited fish epidemic models. Afr. Mat. 22, 177–199 (2011). https://doi.org/10.1007/s13370-011-0016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-011-0016-z

Keywords

Navigation